Board Review- Part 3: Coagulation

1/9/2022
Outline of review

- General hemostasis / coagulopathy
- Selected coagulopathy topics (8)
Normal hemostasis

- Vasoconstriction:
 Reflex neurogenic mechanisms
 Augmented by endothelin
- Platelet plug (primary hemostasis)
- Activation of the coagulation cascade (secondary hemostasis)
Clinical manifestations in a patient with bleeding disorder

<table>
<thead>
<tr>
<th>Findings</th>
<th>Coagulation Disorders</th>
<th>Platelet or Vessel Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petechiae</td>
<td>Rare</td>
<td>Characteristic</td>
</tr>
<tr>
<td>Deep hematomas</td>
<td>Characteristic</td>
<td>Rare</td>
</tr>
<tr>
<td>Hemarthroses</td>
<td>Characteristic</td>
<td>Rare</td>
</tr>
<tr>
<td>Delayed bleeding</td>
<td>Common</td>
<td>Rare</td>
</tr>
<tr>
<td>Bleeding from superficial cuts</td>
<td>Minimal</td>
<td>Persistent</td>
</tr>
<tr>
<td>Patient gender</td>
<td>Most inherited disorders in men</td>
<td>Most inherited disorders in women</td>
</tr>
<tr>
<td>Mucosal bleeding</td>
<td>Minimal</td>
<td>Typical</td>
</tr>
</tbody>
</table>
Secondary hemostasis - cascade model
PT

- Patient’s platelet-poor plasma, tissue thromboplastin, and calcium are mixed; and clotting time is determined.
- Assessment of extrinsic pathway and common pathway
- Reported as INR (international normalized ratio)
- Thromboplastin used may vary from lab to lab and country to country; giving variable PT
- INR is used for standardization
- INR=[Patient PT/Mean of normal PT range]$^{\text{ISI}}$

(ISI: international sensitivity index)
Prolonged PT

- Coumadin
- Vit K def
- Failure of absorption of Vit K (cholestasis, short-bowel syndrome, etc.)
- Liver disease
- Factor def in extrinsic and common pathways
Coumadin

- Vit K epoxide \rightarrow \text{Vit K}

 epoxidase reductase

- Coumadin blocks reductase and non-functional epoxide accumulates
Vit K

The Vit K-dependent factors (II, VII, IX, X) have 9-12 glutamic acid residues near the amino terminal end, which needs to be carboxylated (Vit K-dependent) to bind to phospholipids.

Vit K dependent proteins: II, VII, IX, X, proteins C and S
Patient’s platelet-poor plasma, surface activating agent (silica) and platelet substitute (crude phospholipid or partial thromboplastin) are mixed, and clotting time is determined.

Assessment of intrinsic and common pathways.
An isolated prolonged PTT

- Heparin
- Factor deficiency: VIII, IX, XI, XII
- HMWK (Fitzerald) def
- Pre-kallikrein (Fletcher) def
- Inhibitors: VIII and IX inhibitors, lupus anticoagulant
- vWD
R/O Heparin

- History
- Prolonged Thrombin Time
- Normal reptilase time
Thrombin Time (TT)

- Patient’s plasma and thrombin is mixed, and clotting time is determined.
- Heparin produces prolonged TT but normal reptilase time
- Functional fibrinogen (Clauss method) is based on TT, using diluted plasma sample
Prolonged TT

- Heparin
- Hypofibrinogenemia
- Dysfibrinogenemia
- Thrombolytic therapy
Approach to a prolonged PTT: Mixing study

- Patient’s plasma is mixed with an equal volume of normal plasma (1:1 mix)
- PTT measured at 0 hour (immediate) and 1-2 hours after incubation.
- Failure of correction of prolonged aPTT means inhibitors
- If results at 0 hour and 1-2 hours are similarly prolonged-> lupus anticoagulant, heparin
- If results show time-dependent prolongation -> coag factor antibody (esp. F VIII inhibitor)
Hereditary clotting factor deficiencies

- Hemophilia A (VIII def), B (IX def), C (XI def)
- I, II, V, VII, X, XIII deficiency
- Dysfibrinogenemia
- Hemophilia A, B are X-linked recessive
- Dysfibrinogenemia: autosomal dominant
- All others: autosomal recessive
Acquired Clotting factor deficiency

- Anticoagulants (coumadin)
- Fibrinolytic therapy
- DIC
- Liver disease
- CP bypass
Factor Inhibitors

- Mixing study: no correction
- Spontaneous inhibitors (typically in autoimmune diseases) can go away
- Acquired inhibitors (in hemophilia A patients with chronic FVIII infusions) are persistent
Inhibitors

- Lupus anticoagulant: dilute Russell Viper Venom Time (DRVVT), confirm with Platelet Neutralization Procedure (PNP)

- Factor VIII or IX inhibitor:
 Mixing study does not show correction
 Factor VIII/IX levels very low (functional activity)
Bleeding with normal PT/PTT

- Factor XIII deficiency (clot is soluble in 5M urea solution in 24 hours); Tx: cryo
- Alpha 2-antiplasmin def, Tx: epsilon amino caproic acid (EACA)
Fibrinogen correction using cryoprecipitates

Number of Units (bags) of Cryo:

- Plasma volume ml x (desired level– initial level) mg/dl = X
- 100
- Number of units of cryo = X/150
Platelets

Circulate for 10 days; 1/3 sequestered in spleen
Platelets

- Alpha granules:
 - Fibrinogen, fibronectin
 - Factor V, vWF, PF-4, PDGF, Beta Thromboglobulin, Thrombospondin

- Dense bodies (delta granules):
 - ATP, ADP, ionized calcium, histamine,
 - 5-HT, epinephrine

- Lysosomes containing acid hydrolases

- Alpha granules: stained by Wright-Giemsa stain

- Delta granules: electron dense due to calcium
Platelet events

- Adhesion and shape change
- Platelet release reaction
- Aggregation
Platelet Adhesion

- Interaction between vWF and GP Ib/IX/V receptors
- Conformational change in HMW multimers of vWF upon exposure to subendothelial collagen
Platelet Activation

- Agonists: ADP, Thrombin, TX A2, Collagen, vWF
- Rapid rise in cytoplasmic calcium
- Shape change; extension of pseudopodia
- Release reaction
- Activation of ligand binding site on GP IIb/IIIa
- Translocation of phosphatidylserine to external surface
Platelet Aggregation

- Fibrinogen mediates binding of activated GP IIb/IIIa receptors on adjacent platelets
- Augmented by Thrombospondin; a component of α-granules
Platelet bleeding disorders

- Thrombocytopenia
- Dysfunctional platelets
Clinical presentation

- Purpura
- Mucosal bleeding
- Prolonged bleeding from superficial cuts and abrasions
- Menorrhagia
Investigations for platelet disorders

- Bleeding time (poor predictive value)
- CBC, peripheral smear
- BM examination
- Platelet aggregation studies
Thrombocytopenia

- Decreased production
 - Generalized BM failure
 - Selective megakaryocyte depression

- Increased breakdown: ITP, HIT, Neonatal and post-transfusion purpura

- Increased utilization: DIC, TTP, HUS

- Increased sequestration:
 1. Kasabach-Merritt syndrome (hemangioma, thrombocytopenia, and coagulopathy)
 2. Hypersplenism
Congenital diseases associated with reduced platelet production

- TAR syndrome (autosomal recessive)
- Fanconi’s anemia (autosomal recessive)
- Wiskott-Aldrich syndrome (X-linked recessive): eczema, thrombocytopenia, immune deficiency with decreased IgM
- May-Hegglin anomaly (autosomal dominant): mutations in non-muscle myosin heavy chain IIA (MYH9), Dohle-like bodies
TAR syndrome
(thrombocytopenia with absent radius)
May-Hegglin anomaly

- Thrombocytopenia, giant platelets
- Dohle-like bodies
- Autosomal dominant
ITP

- Immune destruction of platelets
- Increased megs in BM; large and giant platelets in peripheral smear
- Acute: self limiting
- Chronic: >1 year; 10% with splenomegaly
- Antibody against pathogen which cross reacts with GPIb/IX, GPIIb/IIia
ITP

Giant platelets

Increased megakaryocytes in BM
ITP

- ITP may present as part of Evan’s syndrome (with autoimmune hemolytic anemia)
- ITP may occur in patients with SLE, HIV, CLL and following stem cell transplantation
- Treatment:
 - Steroids
 - IVIg
 - Rituximab
 - Oncovin
 - Splenectomy
Pseudothrombocytopenia due to EDTA antibody
Congenital Platelet Disorders

- Disorders of platelet adhesion:
 - von Willebrand’s disease
 - Bernard-Soulier syndrome

- Disorders of platelet activation
 - Storage-pool disease

- Disorders of platelet aggregation:
 - Glanzmann’s syndrome
Defects in platelet adhesion and aggregation
Acquired Dysfunctional Platelets

- Drugs: Aspirin, other NSAIDs, other meds
- Uremia
- Acquired VWD
- Myeloproliferative diseases
Bernard-Soulier disease
Autosomal recessive

Thrombocytopenia with giant platelets
Decreased expression of GP Ib/IX or decreased affinity of GP Ib/IX for VWF
Abnormal platelet aggregation studies: Glanzmann’s thrombasthenia

Primary wave defect for all reagents except Ristocetin

Autosomal recessive
Abnormal platelet aggregation studies:
Storage pool disease or defective release of storage pool contents (aspirin-like defect)

Secondary waves to ADP and epinephrine absent
Selected Coagulopathy Topics
Topic 1

- vonWillebrand Disease
Introduction

- Disorder of primary hemostasis first described in 1926 by Professor Erik von Willebrand: severe mucocutaneous bleeding in a 5 yr old Finnish girl from the Åland Islands; 4 sisters with hemorrhagic deaths before the age of 4; patient died at 13 with her 4th menstrual period
- 1971: the deficient protein was discovered and termed factor VIII-related antigen because it co-purified with factor VIII (FVIII)
- 1976: Zimmerman recognized FVIII R:Ag to be a distinct molecular entity and renamed it vWF protein
- Most common inherited disorder of bleeding in humans with an estimated prevalence of 1-3%
vWD: associated with quantitative and/or qualitative defects of the vWF protein primarily and by deficiency of factor VIII coagulant activity secondarily

Most types are inherited in an autosomal dominant fashion – males and females, all ethnic groups equally affected

More than 100 mutations (chromosome 12) in many subtypes of VWD have been described
von Willebrand Factor

-Synthesized in endothelial cells and megakaryocytes

-vWF stored in Weibel-Palade bodies of endothelial cells & alpha granules of megs/platelets

-vWF levels is higher in:
(a) African Americans, about 15% higher
(b) Chronic inflammation, acute infection, acute trauma
(c) Pregnancy, oral estrogen replacement, or oral contraceptive use
(d) Age, diabetes
(e) Malignancy, stress
(f) Surgery, exercise
vWF Function

ADHESION

PLATELET

GPIIb

von Willebrand Factor

GPIIb/IIIa

Endothelial Cells

Collagen

Glycosaminoglycans

AGGREGATION

PLATELET

GPIIb

von Willebrand Factor

GPIIb/IIIa

PLATELET

Symptoms

- Spectrum of clinical severity- many are subclinical
- Recurrent mucocutaneous bleeding, often spontaneous (menorrhagia, epistaxis, gingival bleeding, gastrointestinal/genitourinary bleeding)
- Excessive bleeding from wounds, bleeding following minor trauma, excessive bruising
- Do not have intramuscular or deep subcutaneous bleeding or hemarthroses
- All in the setting of normal platelet count
Type I

- Most common, 75-80% are Type I
- Autosomal-dominant with variable expressivity
- Clinical symptoms usually mild to moderate, sometimes asymptomatic
- Factor VIII activity (VIII:C), vWF antigen (vWF:Ag), and the ristocetin cofactor activity (vWF:RCoF) decreased proportionately
- Normal spectrum of multimers
- Mild cases respond to DDAVP (1-desamino-8-D-arginine vasopressin)
Type II

- Autosomal dominant
- Much less common with several variants
- Characterized by normal (or slightly-decreased) levels of dysfunctional protein
- Abnormal synthesis (IIa) or consumption (IIb) causing lack of larger multimers in plasma while retaining smaller multimers
Type IIA

- 10-12% of vWD patients
- Autosomal dominant
- Absence of large and medium-sized multimers in plasma
- Small multimers do not bind effectively to the GPIb receptor on platelets in the presence of ristocetin
- VIII:C N/↓, vWF:Ag N/↓, vWF:RCoF ↓↓
- Clinical symptoms usually moderate to severe
- DDAVP ineffective
Type IIB

- 3-5% of vWD patients, much less common than Type IIA
- Autosomal dominant
- Absence of large multimers in plasma due to abnormally high affinity for platelet adhesion (via GP Ib) – creates secondary thrombocytopenia
- VIII:C N/↓, vWF:Ag N/↓, vWF:RCOF ↓↓
- Increased platelet aggregation with low conc of Ristocetin
- Adverse response to DDAVP due to release of abnormal large multimers
vWD: Types 2N (Rare)

- Also called vWD-Normandy and “autosomal hemophilia”
- 1%-2% of all vWD patients
- Results when a genetic defect prevents vWF from binding to FVIII, causing low level of F VIII
- vWF alleles:
 2N/2N (pt with normal vWF level), or 2N/vWD-type 1 (pt with low vWF level)
- Often misdiagnosed as mild hemophilia A
vWD: Types 2M (Rare)

- Characterized by decreased binding by vWF to platelet GPIb
- 1%-2% of all vWD patients
- Autosomal dominant
- Normal multimeric pattern
Type III

- Rare (1-3% of vWD patients), very severe, autosomal recessive form
- Usually offspring of two parents, both with mild type I disease
- No detectable vWF or F VIII activity
- Severe & spontaneous mucosal bleeding, sometimes with hemarthroses (similar to hemophilia)
- No response to DDAVP
Platelet Type (Pseudo) vWD

- Mutation in the GPIIb gene that produces increased affinity of platelets to vWF
- Lack of large multimers secondary to clearance by platelet binding
- Clinical presentation and laboratory results are similar to those of Type IIB
Acquired vWD

- Extremely rare, fewer than 100 well-documented cases
- IgG autoantibodies to the VIII:vWF complex or absorption by malignant cells (e.g. essential thrombocythemia)
- Associated with immunologic disorders (lymphoma, SLE, MM, myeloproliferative neoplasm, benign monoclonal gammopathy), medications (valproate, ciprofloxacin),
- Inhibitors to vWF may develop following replacement therapy
- Treat the underlying disorder (i.e. corticosteroid therapy or chemotherapy/radiation), as well as acute symptoms of bleeding
Laboratory results for vWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type 1</th>
<th>Type 2A</th>
<th>Type 2B</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding time</td>
<td>↑ or N</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Platelet count</td>
<td>N</td>
<td>N</td>
<td>↓ or N</td>
<td>N</td>
</tr>
<tr>
<td>vWF:Ag</td>
<td>↓</td>
<td>↓ or N</td>
<td>↓ or N</td>
<td>↓</td>
</tr>
<tr>
<td>vWF:RCo</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Multimers</td>
<td>N</td>
<td>Abn</td>
<td>Abn</td>
<td>Not detectable</td>
</tr>
<tr>
<td>VIII</td>
<td>↓</td>
<td>↓ or N</td>
<td>↓ or N</td>
<td>↓</td>
</tr>
<tr>
<td>RIPA</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
Ristocetin Cofactor (VWF:RCo)

- Ristocetin (ristomycin) is an antibiotic from the vancomycin group, which is active against gram positive bacteria and mycobacteria. It was introduced for clinical use in 1956-7 and removed from use in 1960.
- VWF:RCo: quantitative assay that determines VWF function (activity) in patient’s plasma
- A log-log-log relationship exists between degree of ristocetin-induced platelet aggregation of formalin-fixed platelets and concentration of VWF in patient’s plasma
Normal tracing using platelet rich plasma (PRP)
vWF:RCo Standard Curve

Tan(\(\alpha\))

0.0 0.25 0.50 0.75 1.0

25 50 75 100 vWF:RCo (%)
Multimer analysis
Special testing for vWD-N and pseudo-vWD

- vWD-N: FVIII-vWF binding assay
- Pseudo-vWD: patients’ platelets will aggregate with cryoprecipitate (containing normal vWF)
Treatment

- Type I – DDAVP (1-desamino-8-D-arginine vasopressin), Stimate™- given intranasally or intravenously, 0.3 ug/kg BW (over 30 min) usually sufficient for transient control of bleeding for minor surgical procedures. For severe cases, use vWF/FVIII Concentrates (Humate-P, half-life 12 hrs)

- Type 2A – vWF/FVIII Concentrates

- Type 2B – vWF/FVIII Concentrates, DDAVP contraindicated

- Type 2N- vWF/FVIII Concentrates

- Type 3 – vWF/FVIII Concentrates

- Pseudo vWD-platelet concentrates for thrombocytopenia
FVIII/vWF dosing

- Loading dose of 50-75 IU/kg body weight
- Then, 40-60 IU/kg body weight every 8-12 hours for 3 days
- Then, 40-60 IU/kg body weight daily for 7 days
Targeted levels for bleeding patient

- FVIII: 50%-100%
- vWF:RCo: 50%-100%

Note that cryoprecipitate should not be used (infection risk) if vWF/FVIII concentrates are available.
Topic 2

- Disseminated Intravascular Coagulation
DIC

- Concurrent activation of the coagulation (thrombin) and secondary fibrinolysis (plasmin) with consumption of factors, inhibitors, platelets, and RBCs (microangiopathic hemolysis)

- The major triggering mechanism: exposure of the blood to tissue factor that initiates intense coagulation, overwhelming antithrombin and activated protein C

- Secondary to sepsis, malignancy (pancreatic cancer, APL, others), obstetrical complications (placental abruption, fetal demise, amniotic fluid embolism), tissue injury (esp. brain in head injury), etc.
Clinical presentation

- Most frequent: bleeding due to low levels of clotting factors and platelets
- Less often: vascular thrombosis (if fibrinolytic system or protein C is impaired)
Typical laboratory results in DIC

- ↑ PT & PTT, thrombocytopenia, ↓ fibrinogen, ↑ Thrombin Time, ↑ FSP/D-dimer
- Schistocytes in peripheral blood smear, ↑ LDH, ↓ haptoglobin
- Laboratory results in DIC vary greatly depending on the severity
FORMATION OF FIBRIN

A. Fibrinogen

B. Fibrin monomer

C. Cross-link

D. Cross-linked Fibrin
- Activators:
 - Tissue plasminogen activator (tPA)
 - Urokinase plasminogen activator (uPA)
- Inhibitors:
 - Plasminogen activator inhibitor-1 (PAI-1)
 - α2-antiplamin
FDP vs. D-DIMER

- Fibrin is formed as the end result of coagulation cascade activation
- Fibrinolysis causes cleavage of fibrinogen, fibrin, and fibrin clot, yields FSP (FDP)
- Only cleavage of fibrin clot (crosslinked fibrin) yields D-dimer -> D-dimer is more specific for DIC
Testing: FSP and D-dimer

- Semi-quantitative FSP
- Qualitative D-dimer
- Semi-quantitative D-dimer
- Quantitative D-dimer
SEMI-QUANTITATIVE FSP

- The first test developed (in the early 70’s)
- Latex agglutination, FSP antibodies are bound on latex beads, if sample contains FSP, agglutination can be detected
SEMI-QUANTITATIVE FSP

- Semi-quantitation:
 - Serial dilution of sample (1:20 through 1:640)
 - A positive result at 1:20 corresponds to 20 μg/mL of fibrinogen equivalent units (FEU)

- False-positive result with rheumatoid factor

- Clinical application: DIC, hyperfibrinolysis
Monoclonal antibodies directed against D-dimer domain
- More specific for in-vivo fibrin clot formation

Manual latex agglutination technique (as for FSP), plasma or serum sample:
- Cut-off value: 0.5 μg/mL FEU
- Semi-quantitative format: dilutions 1:2 through 1:16

Abnormal result in DIC
Normal result in primary fibrinolysis
False-positive result by rheumatoid factor
QUANTITATIVE D-DIMER

- Automated ELISA, immuno-turbidimetry
- Increased in DIC (>0.66 μg/mL)

Quantitative D-dimer also has high negative predictive value for venous thromboembolism (VTE including DVT, PE):
- <0.4 μg/mL, VTE can be ruled out
- Very sensitive but not specific: high Negative Predictive Value / low Positive Predictive Value
DIC: Treatment:

- Treat underlying conditions
- Blood components (RBC, platelet concentrate, cryo, FFP)
Factor VIII Deficiency (Hemophilia A)
Early Observations

- 1828: The word “hemophilia” first appeared in a description of the condition written by German Physician Frederick Hopff at the University of Zurich
- 1840: First recorded case of hemophilia treatment by transfusion
- 1893: First documentation of abnormal prolongation of coagulation in capillary tube in hemophilia
- 1920-1930: Hemophilia treatments published; plasma for transfusions introduced
- 1937: IV administration of redissolved plasma precipitate (cryoprecipitate) shown to shorten blood clotting time
New Discoveries

- 1966: Commercial availability of FVIII concentrates (plasma-derived)
- 1969: FIX concentrate licensed
Hemophilia A

- X linked recessive
- 30% cases result from spontaneous mutation
- Affects all races and ethnic groups equally
- Moderate & mild deficiencies are frequently under-diagnosed
- Affected males -> no sons are affected; all daughters are carriers
- Female carriers-> affected sons, carrier daughter; normal sons/daughters
Bleeding Pattern correlated with F VIII level

- **Severe:** <1%, spontaneous hemorrhage, ~1 per week
- **Moderate:** 1-5%, hemorrhage with incidental injury, ~4–6 / year
- **Mild:** 5-30%, hemorrhage with injury or surgery, bleeding uncommon
- **Subclinical:** 30-50%, hemorrhage with major injury or surgery, bleeding very uncommon
Main Sites of Bleeding

Joint:
- Acute: pain, swelling, interference with normal activities
- Chronic: synovial hypertrophy and synovitis leading to hemophilic arthropathy, disability

Muscle:
- Limb dysfunction
- Compartment syndrome due to nerve compression
Acute joint swelling due to bleeding
CNS Bleeding
Hemophilia A Carriers

- ~ 1/3 have low factor levels
- May experience bleeding symptoms seen in mild deficient states
- Bleeding after dental extraction, tonsillectomy, other surgery, delivery/post partum
- Treat carriers as potential bleeders
Factor VIII assay

- Factor VIII level is inversely proportional to PTT.
- A standard curve (PTT vs F VIII) is first set up using commercial assayed samples.
- Multiple dilutions of patient’s sample (using F VIII-deficient substrate) are tested for PTT.
- These PTT’s are plotted on the standard curve to intrapolate for F VIII.
- Each F VIII is multiplied by the dilution factor to obtain the actual F VIII before dilution.
- F VIII level is the mean of F VIII’s from multiple dilutions.
Factor VIII Standard Curve
Treatment for Hemophilia A

- DDAVP (1-desamino-8-D-arginine vasopressin) for mild cases (2-10 fold increase in Factor VIII level)
- Factor VIII replacement, 1 unit/kg BW raises FVIII level by 2%, $T^{1/2}=8$ hrs
- Factor VIII types: plasma-derived, recombinant, porcine
Example for F VIII Dosage

- 1 IU/kg BW raises FVIII level by 2%
- Patient with 70 kg BW who needs to increase FVIII level from 0% to 100%:
 Dosage = 70 x (100 – 0) / 2 = 3,500 IU

(Note: for hemophilia B: 1 IU/kg BW raises FIX level by 1%)
Target FVIII activity

- Surgery, CNS bleeding, GI and genitourinary bleeds -> 100%
- Bleeding into joints and muscle -> 40-80%
F VIII Inhibitor Development

- Most serious complication of hemophilia A management
- Plasma-derived FVIII and rFVIII carry similar inhibitor risk
- Inhibitor prevalence:
 - ~30% of severe population
 - ~3-13% in moderate deficiency
Factor VIII Inhibitor Assay

- Measured in Bethesda Unit (BU)
- 1 BU = quantity of inhibitor in patient’s plasma that results in loss of 50% factor activity in normal plasma sample (1:1 mix) after incubation for 2 hours at 37°C
- Positive for inhibitor: > 0.5 BU
- High responding inhibitor: titer > 5 BU
- Low responding inhibitor. titer < 5 BU despite repeated exposure
Treatment for F VIII inhibitor

- More F VIII concentrates for mild case (double the dosage)
- For more severe cases:
 - Porcine F VIII (potential for development of inhibitor against porcine F VIII)
 - FEIBA (Factor eight inhibitor bypassing activity) consisting of F IIa, VIIa, IXa, Xa
 - Novo Seven (F VIIa)
- High risk of thrombophilia with FEIBA, Novo Seven
Topic 4

- Vitamin K Deficiency
Vitamin K Deficiency

- Vitamin K dependent proteins: II, VII, IX, X and protein C and S
- The Vit K-dependent factors (II, VII, IX, X) have 9-12 glutamic acid residues near the amino terminal end, which need to be carboxylated (Vit K dependent) to bind calcium to phospholipid membranes.
- In Vit K deficiency, Vit K-dependent factors cannot bind to phospholipid membranes to maintain the coagulation cascade.
- The same effect is seen in Coumadin treatment (Vit K antagonist)
Vitamin K deficiency in adults and children

- Malabsorption of fat-soluble vitamins (bile duct atresia, celiac disease, short-bowel syndrome, etc.)
- Inadequate intake (prolonged fasting)
- Medications (coumadin, antibiotics esp. cephalosporins)
Vitamin K deficiency in Infancy (hemorragic disease of the newborn)

- Premature
- Maternal anticonvulsant medications (phenytoin, phenobarbital, valproic acid, carbamazepine)
- Breast-feeding (human milk is lower in Vit-K compared to cow’s)
Typical test results

- Prolonged PT, PTT (PT >> PTT)
- Mixing PT/PTT show correction
- Decreased Vit-K dependent factors (II, VII, IX, X)
Treatment

- For bleeding patients: FFP
- For all patients: Vit-K given subcutaneously
- Dosage:
 - Adults: 10 mg
 - Infants: 1-5 mg
 - Older children: 5-10 mg
- PT is typically corrected in 4-8 hrs
Prophylactic treatment for infants

- For all infants: 1 mg Vit K₁ (IM) at birth (regardless of being premature or not)
- Breastfed infants: 1 mg Vit K₁ (oral) weekly
- Mothers on antibiotics/anticonvulsants: stop medications and take oral Vit-K (10 mg Vit K₁ daily) for 2 weeks before delivery
Topic 5: Hypercoagulation (thrombophilia)

- Hypercoagulation: poorly understood phenomena
- No definite cause is identified in > 40% of cases
- Three major factors in thrombus formation (Rudolf Virchow, 1845): decreased blood flow; changes in the circulating blood (coagulation factors & inhibitors); changes in the vessel wall
Hypercoagulation Disorders

Factor V Leiden (12-40% of hypercoagulation cases), V
Prothrombin gene mutation (6-18%), V
Protein C deficiency (6-10%), V
Protein S deficiency (5-10%), V
Antithrombin III (AT III) deficiency (5-10%), V
Lupus anticoagulant (LA) (10-20%), A+V
Anticardiolipin antibodies (ACA) (5-10%), A+V
Heparin-induced thrombocytopenia, A+V
Hyperhomocysteinemia (10-20%), A+V
Hypercoagulation in COVID19 infection, A

Legends: A (arterial thrombosis), V (venous thrombosis)
Dahlback described an inherited (autosomal dominant) disorder associated with venous hypercoagulation (1993).

This disorder is due to a mutation in Factor V gene on chromosome 1 (the mutated gene is called Factor V Leiden). Mutation at nucleotide 1691: Guanine-> Adenine, causing substitution at position 506: Arginine-> Glutamine [V506Q]

Note: FV HR2 haplotype (A4070G, His199Arg) has unknown risk
Protein C Pathway

Protein C → Thrombin → Thrombomodulin → Endothelium → Protein S

Activated Protein C → Inactivates F Va, F VIIIa
Cleavage Site on Factor V by APC:
Inactivation of Factor V in normal patient

Factor Va

505-506-507
-Arg -

APC

Inactivation by APC
Cleavage Site on Factor V by APC:

No inactivation of Factor V in patient with Factor V Leiden (95% of APC resistance cases)
Two Forms of Factor V Leiden

- Heterozygous: 3-7% of general population, 3-5 fold increase in risk of deep vein thrombosis, 20% have thrombosis by 33 y/o (mean age of first thrombotic episode)

- Homozygous: 0.06-0.25% of general population, 50-100 fold increase in risk of deep vein thrombosis, 40% have thrombosis by 33 y/o
Other Relevant Information on Factor V Leiden

- Some patients do not have thrombosis unless exposed to hemostatic challenge
- Increased risk for hypercoagulation in combination with other risk factors (such as Lupus anticoagulant, Protein C or S deficiency)
- Factor V procoagulant activity is normal
- Treatment: heparin, coumadin
PCR Testing for FV Leiden

- Amplifies the mutated gene fragment. Results: negative, heterozygous, homozygous.
- Results not effected by factor deficiency, lupus anticoagulant, anticoagulant (as in clot-based tests)

Note: PCR testing cannot detect APC resistance that is not due to FV Leiden
PCR Testing (cont’d)

- Genomic DNA from lymphocytes
- DNA sequence flanking the mutation site is amplified by PCR, resultant product is analyzed by restriction enzyme digestion
- Normal (wild type): two normal FV alleles
- Heterozygous: one abnormal allele
- Homozygous: two abnormal alleles
New PCR Testing: LightCycler (Roche)

- Melting curve analysis method
- “Real time” analysis
- 35 thermal cycles in 25 min, followed by melting curve analysis in 5 min -> results in 30 min
- Batch of 32 samples
- Designed for clinical lab setting
- Optional module for automated DNA extraction (60 min for 32 sample extraction)
MagNA Pure LC and LightCycler
FV Leiden Mutation: Hybridization Probe with Fluoresence Resonance Energy Transfer (FRET)
FV Leiden Mutation: Melting Curve Analysis
Prothrombin Gene Mutation

- Single base pair substitution at nucleotide position 20210 in chromosome 11, guanine-> adenine (\textcolor{red}{G20210A}) . This results in relatively high prothrombin level with increased risk for venous thrombosis (132\% vs 105\% of normal)
- Autosomal dominant. 1-3\% of Caucasion population; risk increased 3 fold (heterozygote)
- 5-18\% of hypercoagulation cases. Tx: heparin, coumadin
- Laboratory: PCR testing for G20210A, Factor II assay (optional)
Protein C Deficiency

- Protein C: a vitamin K-dependent coagulation inhibitor; synthesized in the liver; inactivating F Va and F VIIIa
- Protein C deficiency: autosomal dominant; 0.14-0.5% of population; risk increased 6.5-8 fold; 6-10% of hypercoagulation cases
- Clinical manifestation: recurrent deep vein thrombosis, pulmonary embolism, neonatal purpura fulminans (in homozygote). Tx: heparin, Coumadin
- Laboratory: immunological, functional assays, no mutation testing (>160 mutations)
Protein S Deficiency

- Protein S: a vitamin K-dependent protein; synthesized in the liver and megakaryocytes; cofactor of protein C
- Protein S deficiency: autosomal dominant; 0.7% of population; risk increased 1.6-11.5 fold; 5-10% of hypercoagulation cases
- Clinical manifestation: recurrent deep vein thrombosis, pulmonary embolism, neonatal purpura fulminans. Tx: heparin, coumadin
- Laboratory: immunological assay, functional assay, no mutation testing (>70 mutations)
AT III Deficiency

- AT III: inactivates thrombin and other factors (Xa, IXa, Xla, XIIa, kallikrein); accelerated by heparin
- AT III deficiency: autosomal dominant; 0.17% of population; risk increased 5-8.1 fold; 5-10% of hypercoagulation cases
- Clinical manifestation: recurrent deep vein thrombosis, pulmonary embolism. Tx: AT III, heparin, coumadin
- Laboratory: functional assay (chromogenic), immunologic assay, no mutation testing (>250 mutations)
Lupus Anticoagulant

- Immunoglobulins that prolong in-vitro phospholipid-dependent clotting times
- Found in various conditions; 30% of patients have thrombosis; 10-20% of hypercoagulation cases
- Antiphospholipid antibodies (lupus anticoagulant, anticardiolipin antibody, antiphosphatidyl serine, anti Beta 2 Glycoprotein I, etc): 1-2% of population, 50% of SLE patients
- Clinical manifestation: variety of thrombotic diseases. Tx: Heparin, Coumadin, Aspirin & prednisone (to prevent fetal demise)
- Laboratory: aPTT, dilute Russell Viper venom time (dRVVT), Hexagonal Phospholipid Neutralization, Platelet Neutralization Procedure
Evaluation of lupus anticoagulant

- **Mixing studies**
 - Mix equal parts patient and control plasma
 - aPTT will correct if prolongation due to factor deficiencies
 - If LA present will fail to correct aPTT
 - Usually immediate acting (before incubation)
Dilute Russell Viper Venom Time

Dilute
Phospholipid

Normal plasma
dRVVT 36-42 sec

Plasma with lupus anticoagulant
dRVVT > 43 sec
Neutralization Procedure

Neutralization study:
Addition of phospholipid will neutralize lupus anticoagulant

Two common neutralization tests:
- Platelet neutralization:
 lysates of frozen platelets -> thawed and washed before testing
- Hexagonal phase phospholipid neutralization:
 hexagonal phospholipid with high affinity for lupus anticoagulant
Neutralization Procedure Tests

Platelet Neutralization

- Prolonged aPTT
- Shortened aPTT

Platelets

Sta Clot-LA

- Prolonged aPTT
- Shortened aPTT

Hexagonal PL

Clotting time decreases for >10 seconds after addition of PL -> pos for LA
Anticardiolipin Antibodies

- ACA: IgG, IGM, IgA
- Found in various conditions; thrombotic manifestations; in 5-10% of hypercoagulation cases. Tx: not well worked out, including Heparin, coumadin, and steroid
- Laboratory: ACA by ELISA; high levels are associated with high risks of thrombosis
Anticardiolipin Antibodies (cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Normal range</th>
<th>Clinically insignificant</th>
<th>Moderate risk</th>
<th>High risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>< 15 GPL</td>
<td>15-20</td>
<td>20-80</td>
<td>> 80</td>
</tr>
<tr>
<td>IgM</td>
<td>< 12.5 MPL</td>
<td>12.5-20</td>
<td>20-80</td>
<td>> 80</td>
</tr>
<tr>
<td>IgA</td>
<td>< 15 APL</td>
<td>15-20</td>
<td>20-80</td>
<td>> 80</td>
</tr>
</tbody>
</table>
Genetic and Environmental Factors in Thrombophilia

- Combination of risks: genetic abnormality + environment factor (trauma, surgery, immobility, pregnancy, oral contraceptive, etc.)

- Multiple genetic abnormalities lead to synergistic effect:
 Example: Factor V Leiden heterozygote (risk 3-6 fold) + Prothrombin gene mutation heterozygote (risk 3 fold)-> risk 25 fold

- Hypercoagulation is relatively expensive since the panel includes all significant tests
Interference in hypercoagulation tests

- Patients in active DVT/PE may have low levels of: AT, Protein C, protein S (normal levels are still useful)
- Heparin affects: lupus anticoagulant
- Coumadin affects: protein C, protein S

For baseline testing of the above:
- Get pre-anticoagulant samples
- Test patients after discharge (follow-up visit)
- Patients off heparin for one day
- Patients off coumadin for 2 weeks
Heparin-induced thrombocytopenia (HIT)

- Upon exposure to heparin, the immune system may form antibody against heparin and platelet factor 4 (PF4).
- Upon re-exposure to heparin, the development of these antibodies takes about 5 days to activate platelets forming thrombosis and subsequent thrombocytopenia.

1) Venous and/or arterial thrombosis
2) Risk for warfarin-associated microvascular thrombosis, e.g., venous limb gangrene

Warkentin. Semin Thromb Hemost 2004
HIT

- Risk of HIT is higher with UFH than with LMWH
- Typical onset: 5 days after heparin exposure

Example for cardiopulmonary bypass
Complications of HIT

- Venous thrombosis (50%)
- Arterial thrombosis (10-15%)

Ischemic Limb Syndromes in HIT

- White clot syndrome
- Limb artery thrombosis
- Acral necrosis

Heparin-induced Skin Lesions

- Necrotizing lesions
- Erythematous plaques

Warkentin *J Crit Illn* 2002

Warkentin *Br J Haematol* 1996
Testing for Heparin Antibody

- Heparin-PF4 antibody (ELISA): sensitivity 82%, specificity 70%
- Serotonin release assay: sensitivity 80%, specificity 85%, limited use due to radioisotope (^{14}C)
Anti-PF4/heparin by ELISA

Solid-phase Anti-PF4/heparin-ELISA

“Immuunoassay”

Patient serum or plasma is added to microtiter plates coated with PF4 and heparin

Add alkaline phosphatase-conjugated goat antihuman IgG

Add substrate

COLOR

heparin
PF4
 PF4/heparin complex
HIT-IgG (from serum or plasma)
Alkaline phosphatase-conjugated goat antihuman IgG

Anti-PF4/heparin by Serotonin release assay

- Heparin/PF4 complex
- HIT IgG
- Radiolabeled serotonin released from platelets
HIT Treatment Principles

- Stop Heparin
- Switch to alternate anticoagulant (Danaparoid, Lepirudin, Argatroban, Angiomax)
- No warfarin (which would decrease proteins C and S)
- No prophylactic platelets
Hypercoagulation in COVID19 Infection

- J Thrombosis Research (April 2020): 31% of 184 COVID19 patients suffered thrombotic complications
- New England Journal of Medicine (May 2020): young patients in the 30’s and 40’s with strokes
- The Lancet (April 2020): the virus enters cells via the angiotensin converting enzyme 2 (ACE2) receptors, which are most commonly found in the alveolar epithelial cells, followed by endothelial cells. When the virus binds to these cells, it may damage the blood vessel, especially the microcirculation of the small blood vessels, and thus activates platelet aggregation, leading to hypercoagulation.
- Pulmonary intravascular coagulopathy (Lancet Rheumatol 2020, May 7, 2020): elevated D-Dimer/fibrinogen, normal platelet count, elevated cardiac enzymes with pulmonary hypertension. Lungs filled with microclots helped explain why ventilators work poorly for patients with low blood oxygen. The microclots block circulation and blood is leaving the lungs with less oxygen.
Hypercoagulation in COVID-19 Infection

- The International Society on Thrombosis and Haemostasis (ISTH) recommended that all hospitalized COVID-19 patients should get prophylactic-dose low molecular weight heparin (LMWH), unless they have contraindications (active bleeding and platelet count <25×10^3/µL).

- Many institutions choose threshold values upon which to start systemic anticoagulation: D-dimer >1,500 ng/mL or fibrinogen >800 mg/mL.
Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID19

- While children are less likely to become severely ill than older adults, there are subpopulations of children with an increased risk for more significant illness (MIS-C).

- On April 26, 2020, reports in the United Kingdom (UK) of 8 previously healthy children presenting with a severe inflammatory syndrome with Kawasaki disease-like features: persistent fever and a constellation of symptoms including hypotension, multiorgan (e.g., cardiac, gastrointestinal, renal, hematologic, dermatologic and neurologic) involvement, and elevated inflammatory markers. As of May 12, 2020, the New York State Department of Health identified 102 patients with similar presentations.

- Most patients responded well to intravenous immunoglobulin (IVIG) and high-dose aspirin (ASA) [Veena Jones et al, J Hospital Pediatrics 2020]
Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19

SARS-COV-2 related multisystem inflammation

- Bulbar conjunctivitis 89%
- Red and crackled lips 54%
- Cervical and mesenteric lymphadenopathies 60%
- Skin rash 57%
- Fever >4 days and asthenia 100%
 - Median age 10 years

- Neurological sign 31%
- Respiratory signs 34%
- Left ventricle dysfunction 100%
 - Shock 68%
 - VA ECMO 28.6%
 - Coronary dilatation 17%
 - Pericarditis 8%
- Digestive involvement 83%
 - Nausea, diarrhea 83%
 - Exploratory laparoscopy 5.7%
 (2 patients)

Some of the patient presentations for MIS-C and findings from the Circulation study on multisystem inflammatory syndrome in children. Image courtesy if the American Heart Association. The findings suggest coronavirus is linked with this inflammatory disease in children.
Topic 7

- Platelet functional disorders
Review of platelet functional anatomy

- Glycocalyx: outer surface, rich in glycoproteins
- Microtubules: sub-membranous band, protein tubulin, provide structural support
- Contractile microfilaments: actin, myosin
- Open canalicular system: direct communication with extracellular environment
- Dense tubular system: derived from smooth endoplasmic reticulum, site for arachidonic acid metabolism
Review of platelet functional anatomy

- Mitochondria
- Glycogen
- Alpha granules: platelet fibrinogen, platelet-derived growth factor, vonWillebrand factor, beta-thromboglobulin, heparin neutralizing factor (PF4)
- Dense granules: adenosine diphosphate, adenosine triphosphate, serotonin, calcium
- Lysosomes
Review of platelet functional anatomy
Platelet membrane glycoproteins

- Identified by radio-active labeling of surface glycoproteins, solubilization of the membranes, electrophoresis on polyacrylamide gels

- Clinically important: GP Ib, V, IX, IIb, IIIa
Platelet activities in hemostasis
Platelet activities in hemostasis (cont’d)
Platelet aggregation study

- Principle: aggregation in response to an added chemical stimulus can be monitored by change in transmittance
- Stimulating agent: arachidonic acid, ADP, collagen, epinephrine, and ristocetin
- Platelet functional disorders have typical aggregation patterns
Aggregometer
Normal platelet aggregation patterns
Abnormal platelet aggregation patterns: vWD or Bernard Soulier Syndrome
Pathway of platelet activation

\[
\text{ARACHIDONIC ACID} \xrightarrow{\text{fatty acid cycle-oxygenase}} \text{PGH}_2 \xrightarrow{\text{peroxidase}} \text{PGH}_2
\]
Pathway of platelet activation (cont’d)
Pathway of platelet activation (cont’d)

![Diagram showing the pathway of platelet activation involving ATP, c-AMP, and 5' AMP, with factors like Prostacycline, Adenylate Cyclase, Phosphodiesterase, Epinephrine, Thrombin, ADP, Collagen, Dipyridamol (Persantine), and regulatory molecules.](image-url)
Inherited disorders of platelet function: surface membrane defects

- Glanzmann thrombasthenia: autosomal recessive, defective GP IIb/IIIa
- Bernard Soulier syndrome: autosomal recessive, thrombocytopenia, large platelets, defective GP Ib,V,IX
- Collagen receptor defect: defective thrombospondin
- Platelet-type vWD: autosomal dominant, high affinity for vWF, borderline thrombocytopenia, addition of cryo-> aggregation
Inherited disorders of platelet function: granule defects

- Dense granule deficiency (δ SPD): isolated deficiency or in association with Hermansky-Pudlak, Chediak-Higashi, Wiskott-Aldrich
- Alpha granule deficiency (α SPD): gray platelet syndrome
- Combined granule deficiency ($\alpha \delta$ SPD)
Combined granule deficiency (α δ SPD): Clinical Presentation

- Most cases are autosomal-dominant
- Patients may be asymptomatic, mild-moderate bleeding
Platelet aggregation study
Platelet storage pool disease

Ruled out:
vWD
Bernard Soulier Syndrome
Glanzmann Thrombasthenia
Plavix

Could not rule out:
NSAIDs
Platelet storage pool disease
Platelet granule deficiency: blood smear
Deficiency of alpha granules and delta granules: EM
Deficiency of alpha granules and delta granules : EM
Combined granule deficiency (α δ SPD): Treatment

- Platelet transfusion for symptomatic patients
Topic 7
ADAMTS-13 Testing
Collagen-Binding Assay

- Gerritsen, et. al.
- Principle: small vWF fragments do not bind collagen; large forms do
- Dilutions of patient’s plasma, incubation for 2 hours
- ELISA – Microtiter plates coated with collagen type III
- Collagen-bound vWF quantified using labeled antibodies: detection of (large) vWF bound to collagen by ELISA indicates poor ADAMTS-13 activity
- ADAMTS-13 activity inhibited by EDTA (purple-top) – Must use citrate (blue-top) instead
Bethesda Inhibitor Assay

- Mixing studies
 - Normal human plasma mixed with patient’s plasma
- Residual activity measured via ADAMTS-13 assay
- One Bethesda Unit = quantity of inhibitor that neutralizes 50% of the ADAMTS-13 activity in normal plasma
 - Increase in Bethesda units is exponential
 - Normal is ≤ 0.3 Bethesda Units
Topic 8
Thromboelastograph
Thromboelastograph (TEG): principles

Measuring the mechanical properties of the developing clot:

- The time it takes until initial fibrin formation.
- The kinetics of the initial fibrin clot to reach maximum strength.
- The ultimate strength and stability of the fibrin clot, i.e. its ability to mechanically impede hemorrhage without permitting inappropriate thrombosis.
TEG® 5000
Thrombelastograph®
Hemostasis Analyzer
The TEG analyzer has a sample cup that oscillates back and forth constantly at a set speed through an arc of 4°45'. Each rotation lasts ten seconds. A whole blood sample of 360 ul is placed into the cup, and a stationary pin attached to a torsion wire is immersed into the blood.

When the first fibrin forms, it begins to bind the cup and pin, causing the pin to oscillate in phase with the clot. The acceleration of the movement of the pin is a function of the kinetics of clot development.
Torsion wire

Pin

Cup

.36 ml whole blood (Clotted)

Heating element, sensor & controller

4°45
The torque of the rotating cup is transmitted to the immersed pin only after fibrin-platelet bonding has linked the cup and pin together. The strength of these fibrin-platelet bonds moves the pin directly in phase with the cup motion. Thus, the magnitude of the output is directly related to the strength of the formed clot.

As the clot retracts or lyses, these bonds are broken and the transfer of cup motion is diminished. The rotation movement of the pin is converted by a mechanical-electrical transducer to an electrical signal which can be monitored by a computer.
The resulting hemostasis profile is a measure of:
- The time it takes for the first fibrin strand to be formed,
- The kinetics of clot formation,
- The strength of the clot (in shear elasticity units of dyn/cm²), and
- Dissolution of clot.
Parameters of clot dynamics
Parameters of clot dynamics

<table>
<thead>
<tr>
<th>Clotting time</th>
<th>R</th>
<th>The period of time of latency from the time that the blood was placed in the TEG analyzer until the initial fibrin formation (MA= 2 mm).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clot kinetics</td>
<td>K</td>
<td>A measure of the speed to reach a specific level of clot strength (MA= 20 mm).</td>
</tr>
<tr>
<td>alpha</td>
<td></td>
<td>Measures the rapidity of fibrin build-up and cross-linking (clot strengthening)</td>
</tr>
<tr>
<td>Clot strength</td>
<td>MA,G</td>
<td>A direct function of the maximum dynamic properties of fibrin and platelet bonding via GPIIb/IIIa and represents the ultimate strength of the fibrin clot.</td>
</tr>
<tr>
<td>Hemostasis profile</td>
<td>CI</td>
<td>Coagulation Index, which is a linear combination of the above parameters.</td>
</tr>
<tr>
<td>Clot stability</td>
<td>LY30</td>
<td>Measures the rate of amplitude reduction 30 minutes after MA.</td>
</tr>
</tbody>
</table>
Patterns of TEG Tracings

- **Normal**
 - R; K; MA; Angle = Normal

- **Anticoagulants/hemophilia**
 - Factor Deficiency
 - R; K = Prolonged
 - MA; Angle = Decreased

- **Platelet Blockers**
 - Thrombocytopenia/Thrombocytopathy
 - R ~ Normal; K = Prolonged
 - MA = Decreased

- **Fibrinolysis**
 - R ~ Normal
 - MA = Continuous Decrease
Patterns of TEG Tracings

- **Hypercoagulation**
 - R;K = Decreased
 - MA;Angle = Increased

- **D.I.C.**
 - Stage 1 - Hypercoagulable state with secondary fibrinolysis

- **Stage 2 - Hypocoagulable state**