

Normal hemostasis

Vasoconstriction: Reflex neurogenic mechanisms Augmented by endothelin
Platelet plug (primary hemostasis)
Activation of the coagulation cascade (secondary hemostasis)

Clinical manifestations in a patient with bleeding disorder

Findings	Coagulation Disorders	Platelet or Vessel Disorders
Petechiae	Rare	Characteristic
Deep hematomas	Characteristic	Rare
Hemarthroses	Characteristic	Rare
Delayed bleeding	Common	Rare
Bleeding from superficial cuts	Minimal	Persistent
Patient gender	Most inherited disorders in men	Most inherited disorders in women
Mucosal bleeding	Minimal	Typical

Vascular bleeding disorders

Hereditary

Hereditary haemorrhagic telangiectasia

Ehlers-Danlos syndrome

Marfan's syndrome

Osteogenesis imperfecta

Fabry's syndrome

Infections

Bacterial

Viral

Rickettsial

Allergic

Henoch–Schönlein syndrome Systemic lupus erythematosus Drugs

Food

Atrophic

Senile purpura

Cushing's syndrome and corticosteroid therapy Scurvy purpura

Dysproteinaemia

Amyloid

Miscellaneous

Simple easy bruising Factitious Autoerythrocyte sensitization Fat embolism

Secondary hemostasis

FVIII produced by endothelium, not liver

Individuals with FXII, Prekallikrein and HMWK def do not bleed

FVII has the shortest T^{1/2}

PT

- Patient's platelet-poor plasma, tissue thromboplastin, and calcium are mixed; and clotting time is determined.
- Assessment of extrinsic pathway and common pathway
- Reported as INR (international normalized ratio)
- Thromboplastin used may vary from lab to lab and country to country; giving variable PT
- INR is used for standardization
- INR=[Patient PT/Mean of normal PT range]^{ISI}

(ISI: international sensitivity index)

Prolonged PT

- Coumadin
- Vit K def
- Failure of absorption of Vit K (cholestasis, short-bowel syndrome, etc.)
- Liver disease
- Factor def in extrinsic and common pathways

Coumarin

Coumadin blocks reductase and nonfunctional epoxide accumulates

Vit K

- The Vit K dependent factors (II, VII, IX, X) have 9-12 glutamic acid residues near the amino terminal end, which needs to be carboxylated (Vit K dependent).
- Vit K dependent proteins:
 II, VII, IX, X, proteins C and S

aPTT

- Patient's platelet-poor plasma, surface activating agent (silica) and platelet substitute (crude phospholipid or partial thromboplastin) are mixed, and clotting time is determined.
- Assessment of intrinsic and common pathways.

An isolated prolonged PTT

- Heparin
- Factor deficiency: VIII, IX, XI, XI
- Inhibitors: VIII and IX inhibitors, lupus anticoagulant
- ♦ vWD
- HMWK (Fitzerald) def
- Pre-kallikrein (Fletcher) def

R/O Heparin

History
Prolonged Thrombin Time
Normal reptilase time

Thrombin Time (TT)

- Patient's plasma and thrombin is mixed, and clotting time is determined.
- Heparin produces prolonged TT but normal reptilase time
- Functional fibrinogen (Clauss method) is based on TT, using diluted plasma sample

Prolonged TT

- Heparin
- Hypofibrinogenemia
- Dysfibrinogenemia
- Thrombolytic therapy

Mixing study

- Patient's plasma is mixed with an equal volume of normal plasma (1:1 mix)
- PTT measured at 0 hour (immediate) and 1-2 hours after incubation.
- Failure of correction of prolonged aPTT means inhibitors
- If results at 0 hour and 1-2 hours are similarly prolonged-> lupus anticoagulant, heparin
- If results show time-dependent prolongation
 -> coag factor antibody (esp. F VIII inhibitor)

Factor VIII assay

- Factor VIII level is inversely proportional to PTT
- A standard curve (PTT vs F VIII) is first set up using commercial assayed samples
- Mutiple dilutations of patient's sample (using F VIII-deficient substrate) are tested for PTT.
- These PTT's are plotted on the standard curve to intrapolate for F VIII
- Each F VIII is multiplied by the dilutation factor to obtain the actual F VIII before dilution
- F VIII level is the mean of F VIII's from multiple dilutions

Factor VIII Standard Curve

Factor assay

- For IX, XI, XII, prekallikrein and HMWK: the same principle as for FVIII
- For factors V, VII and X : the same principle except that PT is used instead.
- For fibrinogen: Clauss method based on Thrombin Time with diluted plasma (report level as mg/dl)

Hereditary clotting factor deficiencies

- Hemophilia A (VIII def), B (IX def), C (XI def)
- I, II, V, VII, X, XIII deficiency
- Dysfibrinogenemia
- Hemophilia A, B are X-linked recessive
- Dysfibrinogenemia : autosomal dominant
- All others: autosomal recessive

Acquired Clotting factor deficiency

- Anticoagulants (coumadin)
- Fibrinolytic therapy
- DIC
- Liver disease
- CP bypass

Hemophilia A

- Mild: >10% activity
- Moderate: 2-10% activity
- Severe:<1% activity</p>
- Treatment:
- DDAVP for mild cases (2-10 fold increase in Factor VIII level)
- Factor VIII replacement (1 unit/kg raises FVIII level by 2% (T^{1/2}:8hrs)

Target FVIII activity

- 100%: surgery; CNS bleeding; GI and genitourinary bleeds.
- 40-80%: bleeding into joints and muscle

Calculation

- Blood volume= weight (in kg) x 70 ml
- Plasma volume (PV) = blood volume x (1-Hct)
- Dosage of FVIII= PV x change in level
- Example: 80 kg_patient, Hct = 30%, needs to increase FVIII from 50% to 100%

PV=80x70 (1-0.30)=3920 ml Dosage=3920x(100-50)/100= 1960 IU of FVIII concentrates

Factor Inhibitors

- Mixing study: no correction
- Spontaneous inhibitors (typically in autoimmune diseases) can go away
- Acquired inhibitors (in hemophilia A patients with chronic FVIII infusions) are persistent

Inhibitors

- Lupus anticoagulant: dilute Russell Viper
 Venom Time (DRVVT), confirm with Platelet
 Neutralization Procedure (PNP)
- Factor VIII or IX inhibitor:
 Mixing study does not show correction
 Factor VIII/IX levels very low (functional activity)

DRVVT and PNP

- DRVVT: is based on the principle that LA exacerbates the prolongation of phospholipid-dependent clotting time when phospholipid is diluted.
- PNP: LA prolongs aPTT due to its phospholipid inhibiting property.
 Addition of lysed platelets would correct the aPTT by adsorbing the antibody.

Factor VIII inhibitor

- Seen in approximately 1% of all hemophiliacs (typically severe type)
- I Bethesda unit (BU) of inhibitor is the amount of inhibitor that inhibits half the factor VIII activity in an equal mixture of patient and normal plasma.
- Treatment: FEIBA (factor VIII inhibitor bypass activity) Novo Seven Porcine F VIII

Bleeding with normal PT/PTT

- Factor XIII deficiency (clot is soluble in 5M urea solution in 24 hours); Tx: cryo
- Alpha2-antiplasmin def, Tx: amino caproic acid (EACA)

Fibrinogen correction using cryoprecipitates

Number of Units (bags) of Cryo:

- Plasma volume ml x (desired level— initial level) mg/dl = X
- **•** 100
- Number of units of cryo = X/150

Platelets

Circulate for 10 days; 1/3 sequestered in spleen

Platelets

- Alpha granules:
 Fibrinogen, fibronectin
 Factor V, vWF, PF-4, PDGF, TGF-beta
 Thrombospondin
 Dense bedies (delta granules):
- Dense bodies (delta granules): ATP, ADP, ionized calcium, histamine, 5-HT, epinephrine
- Lysosomes containing acid hydrolases

- Alpha granules: stained by Wright-Giemsa stain
- Delta granules: electron dense due to calcium

Platelet granule deficiency: blood smear

Platelet events

Adhesion and shape change
Platelet release reaction
Aggregation
Platelet Adhesion

- Interaction between vWF and GP lb/IX/V receptors
- Conformational change in HMW multimers of vWF upon exposure to subendothelial collagen

Platelet Activation

- Agonists: ADP, Thrombin, Tx A2, Collagen, vWF
- Rapid rise in cytoplasmic calcium
- Shape change; extension of pseudopodia
- Release reaction
- Activation of ligand binding site on GP IIb/IIIa
- Translocation of phosphatidylserine to external surface

Platelet Aggregation

- Fibrinogen mediates binding of activated GP IIb/IIIa receptors on adjacent platelets
- Augmented by Thrombospondin; a component of αgranules

Platelet bleeding disorders

- Thrombocytopenia
- Dysfunctional platelets

Clinical presentation

- Purpura
- Mucosal bleeding
- Prolonged bleeding from superficial cuts and abrasions
- Menorrhagia

Investigations for platelet disorders

- Bleeding time (poor predictive value)
- CBC, peripheral smear
- BM examination
- Platelet aggregation studies

Bleeding time

- BP cuff at 40mmHg
- Two small punctures on flexor aspect of forearm
- Drops of blood are absorbed with filter paper disks every 30s.
- Poor clinical correlation; can be useful for patients with bleeding manifestation

Bleeding time: reference range < 9 min

Thrombocytopenia

- Decreased production
 Generalized BM failure
 Selective megakaryocyte depression
- Increased breakdown: ITP, HIT, Neonatal and post-transfusion purpura
- Increased utilization: DIC, TTP, HUS
- Increased sequestration: Kasabach-Merritt syndrome (hemangioma)

Congenital diseases associated with reduced platelet production

- TAR syndrome (autosomal recessive)
- Fanconi's anemia (autosomal recessive)
- Wiskott-Aldrich syndrome (X-linked recessive)
- May-Hegglin anomaly (autosomal dominant)

TAR syndrome (thrombocytopenia with absent radius)

May-Hegglin anomaly

Thrombocytopenia, giant platelets Dohle-like bodies Autosomal dominant

ITP

- Immune destruction of platelets
- Increased megs in BM; large and giant platelets in peripheral smear
- Acute: self limiting
- Chronic: >1 year; 10% with splenomegaly
- Antibody against pathogen which cross reacts with GPIb/IX, GPIIb/IIIa

Giant platelets

Increased megakaryocytes in BM

ITP

- ITP may present as part of Evan's syndrome (with autoimmune hemolytic anemia)
- ITP may occur in patients with SLE, HIV, CLL and following stem cell transplantation
- Treatment:
 Steroids
 IVIg
 Rituximab
 Oncovin
 Splenectomy

HIT/HAT

- Antibody binds to PF-4/heparin and results in platelet aggregation and subsequent thrombosis
- 7-10 days post heparin

Investigation and management of HIT

- Heparin induced platelet aggregation studies: patient's serum and normal platelets with heparin, look for positive response (aggregation > 25%)
- 14C-Serotonin release: serum samples from patients with heparin-induced thrombocytopenia initiate 14C-serotonin release from labeled platelets at therapeutic but not high concentrations of heparin.

Treatment of HIT

- Direct anti-thrombin agents:
 Lepirudin (Hirudin analog)
 Danaparoid (10% cross reaction)
 Argatroban
- LMW Heparin: not recommended due to cross-reaction

Pseudothrombocytopenia due to EDTA antibody

Congenital Platelet Disorders

- Disorders of platelet adhesion:
 - von Willebrand's disease
 - Bernard-Soulier syndrome
- Disorders of platelet activation
- Disorders of platelet aggregation:

- Glanzmann's syndrome

Defects in platelet adhesion and aggregation

Dysfunctional Platelets

Membrane Receptor Disorders	Storage Pool Disorders	Biochemical Signaling Disorders
Collagen receptor deficiency	Hermansky-Pudlak syndrome	Cyclooxygenase deficiency
a2-Adrenergic receptor deficiency	Wiscott-Aldrich syndrome	Thromboxane synthetase deficiency
ADP receptor deficiency	Chediak-Higashi syndrome	Decreased arachidonic-acid release
TxA ₂ receptor abnormality	Idiopathic dense granule deficiency	Phospholipase C disorders
	Gray platelet syndrome	G-protein disorders
	Quebec platelet disorder	Abnormal phosphatidylinositol metabolism Idiopathic

Acquired Dysfunctional Platelets

- Drugs: Aspirin, other NSAIDs
- Uremia
- Acquired VWD
- Myeloproliferative diseases
- Anti-platelet antibodies

Platelet aggregation study

- Principle: aggregation in response to an added chemical stimulus can be monitored by change in transmittance
- Stimulating agent: arachidonic acid, ADP, collagen, epinephrine, and ristocetin
- Platelet functional disorders have typical aggregation patterns

Normal pattern

ADP and epinephrine exhibit two waves of aggregation, primary and secondary

The secondary wave is due to release of endogenous ADP

Abnormal platelet aggregation studies

VWD and Bernard Soulier have similar aggregation pattern: Aggregation in response to ristocetin is abnormal

Von Willebrand factor

HMW glycoprotein, synthesized by endothelium and megakaryocytes

VWD is the most common congenital bleeding disorder

Classification of von Willebrand disease

VWD Sub-Type	Defect	Inheritance
Type 1	Decreased quantity of all vWF multimers High-molecular-weight multimers present Concordance botween vWF:ag and vWF:Bcof	Autosomal dominant
Type 2A	Abnormal platelet dependent vWF function Discordance between vWF ag and vWF fraction	Autosomal dominant
Type 2B	Loss of some high-molecular-weight multimers Increased affinity of vWF for GP Ib/IX/V Association with thrombocytopenia	Autosomal dominant
Type 2M	Abnormal platelet-dependent vWF function Discordance between vWF:ag and vWF:Rcof High-molecular-weight multimers present	Autosomal dominant
Type 2N	Decreased affinity for factor VIII Normal platelet-dependent vWF function Decreased factor VIII, prolonged APTT	Autosomal recessive
Туре 3	Severe deficiency of vWF Multimeric analysis cannot be performed Factor VIII also markedly decreased	Autosomal recessive
Platelet-Type	Abnormal GPIb/V/IX (Ibα) Increased affinity for normal vWF Association with thrombocytopenia	Autosomal dominant

Investigation of VWD

- Prolonged PTT
- Abnormal platelet aggregation studies
- VWD panel:
- Factor VIII:C activity
- vWF- Antigen
- vWF- Ristocetin co-factor activity
- (ability to aggregate normal platelets)
- in the presence of ristocetin)
- Multimeric analysis

Multimeric Analysis of vWF

VWD

Type I: most common

Type IIB and platelet type: large multimers absent; these two types show aggregation with low-dose ristocetin

Treatment of vWD

Desmopressin: twofold to tenfold increase in plasma vWF level; contraindicated in vWD type 2B and platelet-type vWD as release of abnormal vWF may induce thrombocytopenia

vWF/FVIII concentrates

Acquired vWD

- Presentation: sudden onset of mucocutaneous bleeding in a previously asymptomatic patient
- Mechanisms:
 - Antibody to vWF: increased clearance of vWF from circulation or inhibition of vWF function
 - Adsorption by tumor cells: tumor cells may have aberrent GP $\mbox{Ib}\alpha$ receptor expression

Bernard-Soulier disease Autosomal recessive

Thrombocytopenia with giant platelets Decreased expression of GP Ib/IX or decreased affinity of GP Ib/IX for VWF

Abnormal platelet aggregation studies: Glanzmann's thrombasthenia

Primary wave defect for all reagents except Ristocetin

Autosomal recessive

Abnormal platelet aggregation studies: Storage pool disease or defective release of storage pool contents (aspirin like defect)

Secondary waves to ADP and epinephrine absent