TTP and ADAMTS-13

Meredith Reyes, MD October 17, 2005

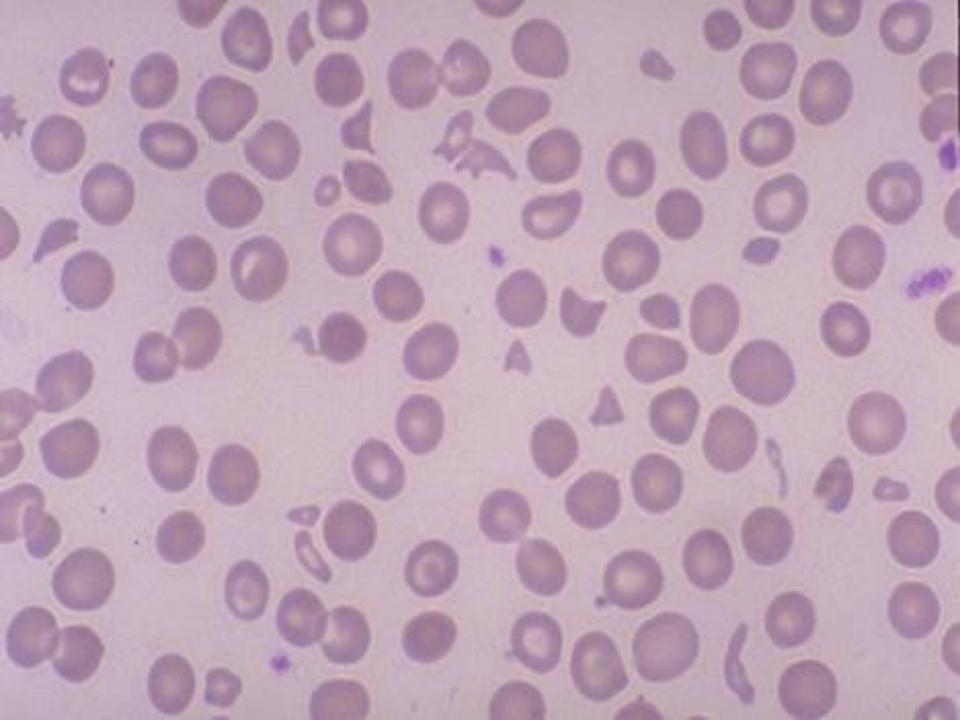
Overview

- Thrombotic Microangiopathy
- TTP
 - Pathogenesis
 - Treatment
- HUS
- Laboratory assays of ADAMTS-13 activity

Thrombotic Microangiopathy

Thrombotic Microangiopathies (TMA)

- Thromboses in terminal arterioles and capillaries
- Organ ischemia
- Thrombocytopenia
- Erythrocyte fragmentation


TMA Causes

- Medications
- Malignancies
- HIV
- Autoimmune Disorders
- Bone marrow transplantation
- Pregnancy
- Acquired / Idiopathic
 - Idiopathic TTP
 - Shiga-toxin producing E. Coli
- Familial

Thrombotic Thrombocytopenic Purpura

Clinical Features

- Fever
- Hemolytic Anemia with Schistocytes
 - At least 3/100 cells
 - Serum LDH increased
 - Serum haptoglobin decreased
- Thrombocytopenia (usually <10K)
 - Bone marrow with increased megakaryocytes
- Renal Dysfunction
- Neurological Deficits

von Willebrand Factor

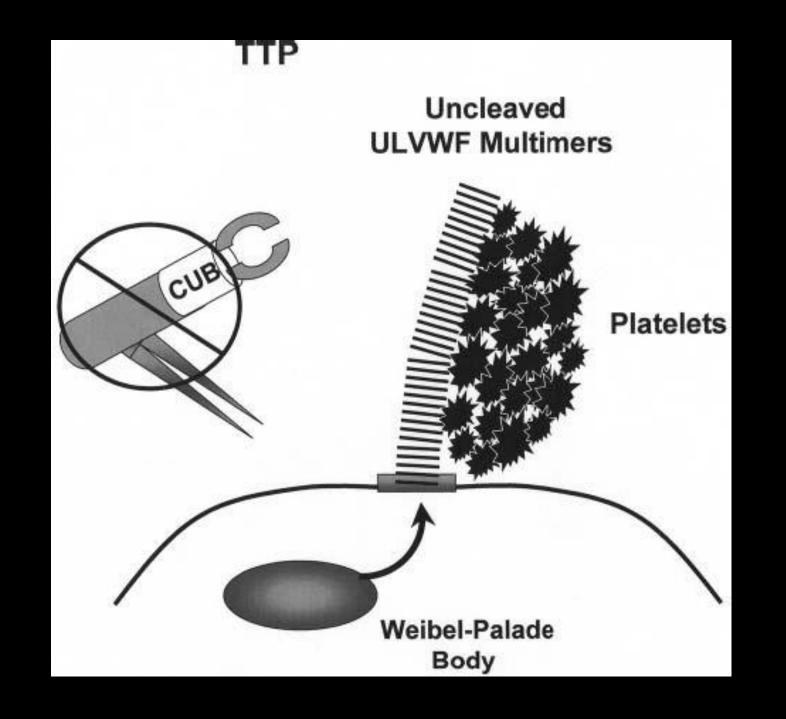
- Central to TTP pathogenesis
- Multimers constructed w/in megakaryocytes and endothelial cells
- Stored in platelet α-granules & endothelial cell Weibel-Palade bodies
- Ultra-large multimers released & processed in plasma
 - 500-20,000 kd

Secretion stimulated by histamine, Shiga toxin, TNF-α, IL-8, IL-6

ULVWF Multimers

- Bind efficiently to platelet receptors
- More thrombi formation vs cleaved VWF
 - More binding sites
 - Closer proximity
- Thrombi embolize → organ ischemia
- Process controlled by ADAMTS-13

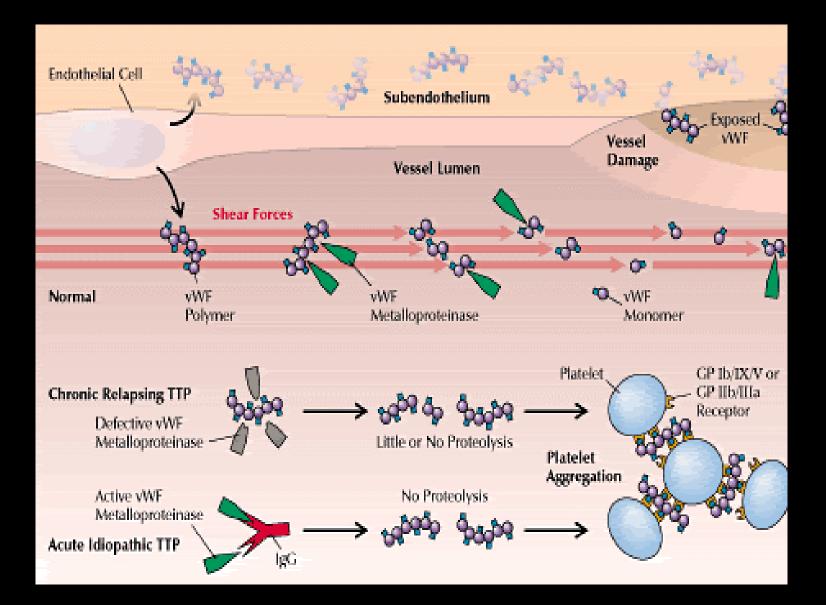
What is ADAMTS-13?


- "A Disintegrin And Metalloprotease with ThromboSpondin domains" protease family
- Zn & Ca required for activity
- Synthesized in liver perisinusoidal cells
- Activity reduced in liver disease, malignancies, metabolic & inflammatory conditions, pregnancy, newborns

How Does ADAMTS-13 Work?

- Shear forces unfold ULVWF multimers
- ADAMTS-13 action
 - Binds A3 domain
 - Cleaves ULVWF
 - 140 kd & 176 kd fragments

Multiple cleavages



Acquired Idiopathic TTP

- Anti-ADAMTS-13 IgG
- Prohibits protease activity
- Associated with:
 - Autoimmune disorders
 - Ticlopidine
 - Clopidogrel (Plavix)

Familial TTP

- Upshaw-Schulman Syndrome
- Chronic relapsing disease
- 1st episode usually in childhood
- < 5% of normal plasma ADAMTS-13 levels</p>
- Homozygous or compound heterozygous mutations in both ADAMTS-13 alleles
 - Chromosome 9q34
 - 70+ mutations described

TTP Treatments

Classic TTP Treatments

- ADAMTS-13 Replacement!
- FFP
 - ADAMTS-13 + ULVWF polymers
 - Cryo-poor FFP: contains NO ULVWF polymers
 - Not making things worse!
 - Best for familial disease
 - Watch for hypervolemia
- Therapeutic Plasma Exchange
 - Giving FFP, plus REMOVING...
 - ULVWF-platelet aggregates
 - Stimulants of ULVWF secretion
 - Anti-ADAMTS-13 IgG

New TTP Treatments

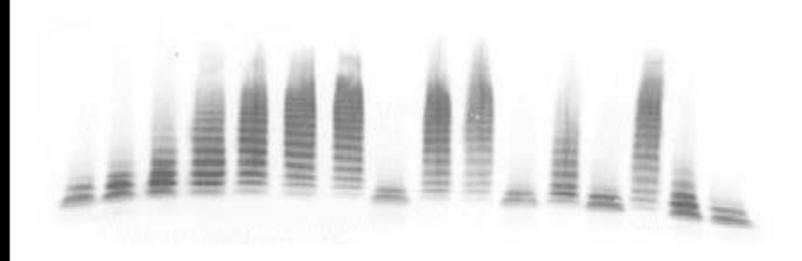
- Glucocorticoids
- Rituximab
- Staphylococcal Protein A Immunoabsorption
- Truncated ADAMTS-13

TTP Look-Alikes

- Hemolytic Uremic Syndrome
- Disseminated Intravascular Coagulation
- Infections (Aspergillosis, RMSF, CMV)
- Pregnancy-induced thrombocytopenias
- Intravascular devices (heart valves)
- Malignant hypertension
- Vasculitis
- Antiphospholipid antibody syndrome ADAMTS-13 activity level detectable & >5%

Hemolytic Uremic Syndrome

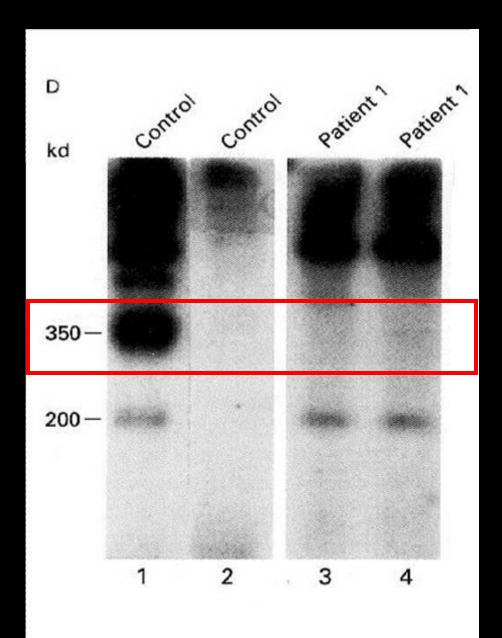
- Milder blood count abnormalities
- More severe renal failure
- Causes
 - E. coli O157:H7
 - Factor H deficiency
- Normal levels of ADAMTS-13 activity


Laboratory Assays

Assay Methods for ADAMTS-13

- Used to assess ADAMTS-13 activity levels (NOT protease itself)
- Substrate VWF (purified or recombinant)
- VWF unfolding urea or guanidine
- Activation BaCl₂
- Detection electrophoretic methods, decrease in related function
- ADAMTS-13 activity inhibited by EDTA
 - Must use citrate instead

Loss of ULVWF Multimers


- Furlan, et. al.
- Looks for decreased multimer size
- Serially diluted plasma samples
- Purified VWF & urea added
- Overnight incubation
- SDS-agarose gel electrophoresis & immunoblotting with anti-VWF antibody
- Electrophoresis compared to serial dilutions of normal human plasma

з

Analysis of Cleavage Products

- Tsai and Lian
- Purified VWF incubated with guanidine-HCL
- Plasma samples diluted & substrate added
- 1 hour incubation
- SDS-polyacrylamide gel electrophoresis & immunoblotting with anti-VWF antibody
- Dimers migrate as 200 kd and 350 kd bands

Collagen-Binding Assay

- Gerritsen, et. al.
- Small VWF fragments do not bind collagen; large forms do
- Dilutions of plasma mixed with purified VWF
- Incubation 2 hours
- ELISA Microtiter plates coated with collagen type III
- Collagen-bound VWF quantified using labeled antibodies

Immunoradiometric Assay (IRMA)

- Obert, et. al.
- Plasma mixed with recombinant VWF
- Overnight incubation
- Residual activity estimated in microtiter plates via IRMA
 - Monoclonal antibody (epitope C-terminal to cleavage site)
 - 2nd monoclonal antibody labeled with I¹²⁵ (epitope N-terminal to cleavage site)
- Cleavage of VWF detected by decreased binding of labeled antibodies

Ristocetin-Induced Aggregation

- Bohm, et. al.
- Ristocetin Norcadia Iurida glycopeptide antibiotic
 - Initiates binding of VWF to platelet glycoprotein Ib
 - Correlation between VWF size and ristocetin cofactor activity
- Purified VWF mixed with plasma
- Overnight incubation
- Residual VWF:ristocetin cofactor activity assayed
- Turbidity compared to serial dilutions of normal human plasma

Fluorogenic Assay for VWF Cleavage

- Substrate is FRET-VWF73
 - C-terminal 2/5 of A2 domain of VWF
 - Cleaved in absence of denaturants & shear forces
 - Cleavage causes fluorescence

Plasma added & fluorescence counted over time

- Normal plasma: fluorescence increases with time
- ADAMTS-13 deficient plasma: fluorescence fails to increase or increases by smaller amounts

Bethesda Inhibitor Assay

- Mixing studies
 - Normal human plasma mixed with patient's plasma
- Residual activity measured via ANY assay
- One Bethesda Unit = quantity of inhibitor that neutralizes 50% of the ADAMTS-13 activity in normal plasma
 - Increase in Bethesda units is exponential
 - Normal is \leq 0.3 Bethesda Units

Comparing the Assays

- 30 plasmas tested with various assays
 ADAMTS-13 levels from <3% to 100%
- Severe ADAMTS-13 deficiency
 - Good interassay & interlaboratory agreement
- Normal or moderately reduced ADAMTS-13

 Less concordant results
- Few errors with collagen-binding assay

When ADAMTS-13 assay is ordered here...

- The Blood Center of Southeastern Wisconsin Reference Laboratory
- Gerritson method and Bethesda Inhibitor Assay
- Sample collected in citrate and sent frozen
- Assay run 2x per week
- Turnaround time 7-10 days
- Cost \$105

Test Utility

- Patient presentations vary greatly
- Can help to refine treatment course
- May help to anticipate clinical course of patients with TTP

Test Drawbacks

- Clinical course and ADAMTS-13 levels don't always correlate
- Transfusion of RBC's and platelets can increase ADAMTS-13 activity
- Assays are time consuming and must be sent to reference labs

Resources

- Kokame, K, et. al; "FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay", British Journal of Haematology, 129, 93-100.
- Kremmer Hovinga, J, et. al; "The von Willebrand Factor-Cleaving Protease (ADAMTS-13) and the Diagnosis of Thrombotic Thrombocytopenic Purpura (TTP), Pathophysiol Haemost Thromb 2003/2004, 33, 417-421.
- Mayer, SA, et. Al; "Thrombotic Microangiopathy: Differential diagnosis, pathophysiology and therapeutic strategies", The Mount Sinai Journal of Medicine, May 2005, 72 (3), 166-175.
- Sadler, JE, et. al; "Recent advances in Thrombotic Thrombocytopenic Purpura", Hematology 2004, 407-423.
- Tripodi, A, et. al; "Measurement of von Willebrand factor cleaving protease (ADAMTS-13): results of an international collaborative study involving 11 methods testing the same set of coded plasmas" J of Thrombosis and Hemostasis, Sep 2004, 2 (9), 1601-1609.
- Tsai, Han-Mou; "Advances in the Pathogenesis, Diagnosis, and Treatment of Thrombotic Thrombocytopenic Purpura", J Am Soc Nephrol. 2003 Apr;14(4):1072-81.
- Veyradier, A, et. al; "Assays of ADAMTS-13 Activity", Sem in Hematology, Jan 2004, 41 (1), 41-47.