Primary Immunodeficiencies

Elsa Sotelo 6/18/07

Primary Immunodeficiencies

- Humoral immunity defects (affecting B-cell differentiation or antibody production)
- T-cell defects and combined B- and T-cell defects
- Phagocytic disorders
 Complement deficiencies
 Miscellaneous

Disorders of Humoral Immunity

- Make up 50% of primary immunodeficiencies
- Patients present after 6 months when maternal antibodies are lost
- Recurrent bacterial sinus and pulmonary infections are the hallmark
- Intact cellular immune system are able to handle most viral and fungal pathogens

Subgroups

- Common Variable Immunodeficiency
- Selective IgA deficiency
- Bruton's or X-linked agammaglobulinemia
- Selective antibody deficiency

Common Variable Immunodeficiency

- Most frequently diagnosed
- Encompasses a heterogenous group of disorders that cause hypogammaglobulinemia (gamma-globulins 200-300 mg/dL)
- Defective antibody formation with normal number of B and T-cells
- Decrease in IgG and IgA are more common
 50% will also have an IgM deficiency

Presentation

- Presents at different ages but most commonly occurs in late childhood or early adulthood
- Patients present with giardiasis and bronchiectasis
- Increased risk of malignancies such as gastric cancer and lymphoma, amyloidosis, autoimmune disorders and IgA deficiency
- Poor response to vaccination

Selective IgA Deficiency

- May have highest incidence but often undiagnosed
- B-lymphocytes are unable to mature to IgA producing plasma cells
- Caused by deletions of IgA1 and 2 on chromosome 14 and partial deletion of the long arm of chromosome 18
 Superior Is A local and the long of the long (II)
- Serum IgA levels are usually less than 5 mg/dL
- IgG and IgM levels are normal

Presentation

Patients often have sinusitis and respiratory tract infections along with GI involvement
Common organisms are pyogenic bacteria
Increased risk of allergies, autoimmune disorders and lupus-like syndromes

X-linked

Agammaglobulinemia/Bruton's

- Caused by a mutation or absence of the Bruton's tyrosine kinase gene (BTK) which is responsible for maturation
- Early B-cell development is arrested and serum immunoglobulins are markedly deficient or absent (less than 100 mg/dL)

■ T-cells are normal in number

- Lymph nodes show hypoplasia, absence of germinal centers and decreased plasma cells
- Different BTK mutations give rise to different phenotypes

Presentation

- May not present until 3-5 years old
- Patients present with recurrent respiratory tract, joint, CNS and systemic infections
- Most common bacteria are S. pneumonia, H. influenza and streptococcus
- Susceptible to viral hepatitis
- Reports of paralysis following live polio vaccinations

Selective Antibody (class and subclass) deficiency

- Many individuals harbor subclass (IgG1-4) deficiencies
- Total serum IgG concentration may be normal or abnormal depending on the subclass
 70% of IgG is IgG1 and 1-2% is IgG4
 IgA and IgM levels are normal
 1/5 of IgA deficient patients have a concomitant IgG subclass deficiency

T-cell and Combined B and T-cell Defects

Make up about 30% of the primary immunodeficiencies

Present before 6 months

 Severe infections with viruses, fungi and mycobacterium

Failure to thrive

Subgroups

- DiGeorge Syndrome
- Severe Combined Immunodeficiency
- Wiskott-Aldrich Syndrome
- Ataxia-telangiectasia
- Hyper-IgM
- Major Histocompatibility Complex Deficiency

DiGeorge Syndrome

- Caused by a deletion in chromosome 22q11
- Results from an abnormal migration of the third and fourth branchial pouches during embryogenesis
- Hypoplasia to aplasia of the thymus and parathyroids
- Hypocalcemic tetany
- Associated defects include Truncus Arteriosis, Tetralogy of Fallot, esophageal atresia and dysmorphic facial features

Presentation

- Presents within the first few months
- Characterized by viral, fungal and protozoal infections
- Dissemination is common
- CD 3 T-cell count is usually less than 500 per mL
- Normal immunoglobulin concentrations
- Some may have decreased IgA and increased IgE

Severe Combined Immunodeficiency

- Presents in the first few months of life
- Characterized by severe opportunistic infections such as Candida, measles, varicella, CMV and Pneumocystis
- Patients also present with chronic diarrhea, failure to thrive and an increased risk of graft vs host disease

SCID

- Clinical and laboratory evaluation reveals absence of cellular immune function manifested by lymphopenia, cutaneous anergy and absence of lymphocyte proliferation response
- Serum immunoglobulin concentrations are depressed and antibody response to immunization is difficult to detect
- T-cells have an immature phenotype resembling Stage I or Stage II thymocytes
- Subclassified into T-B- and T-B+

T-B-

- RAG1 and RAG2 deficiencies (recombinant activating genes)
- Omenn syndrome: erythroderma, eosinophilia, increased IgE and hepatosplenomegaly
- Reticular dysgenesis: failure of bone marrow stem cell production; patients are lymphopenic and granulocytopenic

T-B+

- Autosomal recessive harboring JAK 3 mutations (tyrosine kinase that transduces the interleukin gamma chain receptors)
- X-linked caused by mutations in the gene that codes the common gamma chain of IL-2, 4, 7, 9 and 15 receptors

Abnormal Purine Metabolism

- Dysfunction of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) enzymes can lead to accumulation of toxic intermediates that cause loss of lymphocytes
- Both B and T-cells are decreased
- ADA deficient patients have skeletal abnormalities
- PNP deficiencies are associated with neurologic abnormalities and autoimmune disorders

Hyper IgM

- Caused by a mutation in CD 40L gene which prevents immunoglobulin production
- Can be X-linked, AD, AR or acquired
- Exhibit low concentrations of IgG, IgA and IgE and a polyclonal increase in IgM
- Patients present in infancy with pneumonia, sinusitis, otitis media and tonsillitis
- Have pronounced lymphadenopathy
- May have autoimmune hemolytic anemia and thrombocytopenia

Major Histocompatibility Complex Deficiencies

- Divided into type I and type II
- Type I is associated with low levels of HLA class I molecules and chronic infections of the respiratory tract and vasculitis
- Type II results in a profound combined immunodeficiency with fungal and protozoal infections of the respiratory and GI tract
- Type II is AR and is caused by mutations in at least three different transcription factors (RFX5, RFXAP, and MHC2TA)
- B and T-cells are present in normal number but HLA-DR is absent

Wiskott-Aldrich

- The gene is X-linked and encodes the Wiskott-Aldrich syndrome (WAS) protein responsible for actin filaments in the cytoskeleton
- T-cells are decreased due to decreased or absent CD 43 (glycoprotein for T-cell activation and proliferation)
- Decreased IgM, low or normal IgG and increased IgA and IgE

Presentation

- Characterized by eczema, thrombocytopenia, small platelets and platelet dysfunction with a normal amount of megakaryocytes in the bone marrow
- Patients exhibit impaired humoral response to encapsulated and high-grade bacterial pathogens resulting in otitis media, pneumonia, meningitis and sepsis
- Later patients suffer from Herpes and Pneumocystis infection
- Increased risk of autoimmune disease and cancer

Ataxia-telangiectasia (Louis-Bar's syndrome)

- Progressive neurologic disorder associated with cerebellar ataxia, oculocutaneous telangiectasias, chronic respiratory infections, a high incidence of malignancy
- Variable humoral and cellular immunodeficiency
- **B** cell numbers and IgM concentrations are normal to low
- IgG is often reduced and IgA is considerably reduced (in 70% of the cases)
- Occurs in childhood
- Defects arise from a breakage in chromosome 14 at the site of TCR and Ig heavy chain genes
- Disorder of DNA repair

Phagocytic Disorders

Chronic granulomatous disease (CGD)
Leukocyte Adhesion Deficiency
Chediak-Higashi syndrome

CGD

- Most frequently diagnosed phagocytic primary immunodeficiency
- Characterized by marked lymphadenopathy, hepatosplenomegaly and chronic draining lymph nodes
- 70 % are X-linked and 22% are AR
- Leukocytes have poor intracellular killing and low respiratory burst
- Deficiency is due to a defect in NADPH oxidase that participates in phagocytic respiratory burst
- Patients are susceptible to catalase + organisms (Staph)
- Aspergillus is the most common cause of death

Leukocyte Adhesion Deficiency

- Leukocytes lack the complement receptor CR3 due to a defect in CD11 or CD18 peptides and consequently they cannot respond to C3b opsonin.
- Alternatively there may a defect in integrin molecules, LFA-1 or mac-1 arising from defective CD11a or CD11b peptides
- These molecules are involved in diapedesis and hence defective neutrophils cannot respond effectively to chemotactic signals
- Patients suffer from recurrent bacterial infections without much pus, periodontitis, delayed wound healing, elevated leukocyte counts and a history of delayed shedding of the umbilical cord stump
- Soft tissue infections are common and severe mainly with S. aureus, Pseudomonas and enterobacteraceae

Chediak-Higashi syndrome

- AR caused by a mutation in the CHS1 gene that encodes a protein involved in organelle trafficking
- Marked by reduced (slower rate) intracellular killing and chemotactic movement accompanied by inability of phagosome and lysosome fusion and proteinase deficiency
- Respiratory burst is normal
- Accompanying NK cell defect and platelet and neurological disorders are noted

Complement Disorders

- Account for less than 1% of immunodeficiencies
- Most are autosomal recessive (except for C1 esterase inhibitor)
- Result in recurrent infections, SLE, lupus-like disorders, autoimmune disorders or glomerulonephritis
- Majority are asymptomatic
- Patient with defects in the lytic pathway (C5, C6, C7 or C8) have infections with Neisseria
- Angioedema is associated with a C1 esterase inhibitor deficiency
- C3 deficiency leads to reduced serum opsonization and an increased incidence of severe infections due to encapsulated organisms
- C5 and C9 (Japan) have reduced hemolytic complement activity

Hyper-IgE Syndrome (Job's Syndrome)

- Autosomal dominant disorder of unknown cause
- Patients suffer from recurrent staphylococcal abscesses involving the skin, lungs, joints, and soft tissues
- May suffer from generalized dermatitis
- Job's syndrome is associated with a neutrophil motility defect attributed to defective production of interferon-gamma
- The poor production of interferon-gamma in response to IL-12 results in the marked elevation of IgE levels (by means of unopposed IL-4 action).
- IgE levels are increased in excess of 2000IU/Ml
- Peripheral eosinophilia is characteristic

Chronic Mucocutaneous Candidiasis

- Syndrome marked by chronic candidal infections of the skin and mucous membranes
- Not fatal
- Cause is unknown
- Have accompanying endocrinopathies
- Treatment is ketoconazole

X-linked Lymphoproliferative Syndrome (Duncan disease) Defects in the XLP (LYP) gene located at Xq25 Abnormal response to EBV infections ■ 70% die as a result of an intense lymphocyte

proliferation that occurs during mononucleosis

Often accompanying depression of T-cell immunity if survival is achieved

Some patient's have normal B and T-cells with an elevated percentage of CD 8+ cells

Diagnosis

- Immunodeficiencies should be suspected when recurrent infections are severe, complicated, resistant to treatment or caused by unusual organisms
- Should also be suspected with chronic diarrhea, failure to thrive, skin lesions, oral or esophogeal thrush, oral ulcers and periodontitis
- Onset of infections before 12 months of age suggest combined B and T-cell or B-cell defects
- In general, the earlier the age, the more severe the immunodeficiency

Diagnosis

- Initial screening tests include:
 - CBC with diff to look for WBC and platelet count
 - Quantitative Ig measurements
 - Antibody titers
 - Skin testing for delayed hypersensitivity
 - Antibody response to vaccination

Diagnosis

If initial tests are abnormal then:

- Flow cytometry
- In vitro mitogen stimulation
- Serologic HLA typing for MHC deficiency
- Flow cytometric respiratory burst assay to detect whether oxygen radicals are produced during phagocytosis
- Nitroblue tetrazolium (NBT) test
- Complement assay (CH50) test
- DNA tests

Prenatal Diagnosis

Can be done using chorionic villus sampling, cultured amniotic cells or fetal blood sampling
Only done when a mutation in family members is identified

Treatment

IVIG is standard therapy

- Bone marrow transplant for cellular deficiencies (SCID, Wiskott-Aldrich and DiGeorge) and may be beneficial in chronic granulomatous disease
- Patients with T-cell deficiencies require chemotherapy prior to transplantation
- Some reported benefit from thymus transplantation for DiGeorge
- Prophylactic antibodies
- Enzyme replacement in ADA deficiency
- Interferon-γ therapy for chronic granulomatous disease
- Gene therapy

Prognosis

- Ig or complement deficiencies have a near normal life expectancy if diagnosed early and treated appropriately
- Phagocytic and combined deficiencies have a guarded prognosis

age

- Combined B and T-cell and T-cell deficiencies have a poor prognosis
- SCID will die during infancy unless immunity can be restored through transplant before 3 months of

References

- Bonilla et al. Practice parameter for the diagnosis and management of primary immunodeficiencies. Annals of Asthma, Allergy and Immunology, Volume 94. May 2005.
 ARUP's Guide to Clinical Laboratory Testing. 2004
- MacClatchey