Hereditary elliptocytosis & pyropoikilocytosis

Michelle E. Rodriguez, MD
February 12, 2007
Red cell membrane disorders

- Hereditary pyropoikilocytosis
- Hereditary elliptocytosis
- Hereditary spherocytosis
RBC proteins

Skeletal – structural integrity
- Spectrin α & β
- Protein 4.1 or 4.1R
- Actin

Transmembrane – ion transport, blood antigens (Rh),
- Band 3 (AE1)

Linker Proteins – attach skeletal to transmembrane
- Ankryin with 4.2
- 4.1R (glycophorin C & D)
Red cell membrane

Hereditary Elliptocytosis (HE)

- Elliptocytes

- Overall incidence is 1:5000 (slightly more frequent in US)

- Increased in African & Mediterranean populations (malarial resistance)

- Clinical spectrum – silent carriers to transfusion dependent hemolysis
Hereditary Elliptocytosis

- Failed to regain normal shape after passage in microcirculation
- Red cell precursors are round, elliptical with age
- Pathogenesis is unknown … perhaps skeletal reorganization after prolonged or repeated stress
Protein defects

- Spectrin α-chain binding sites (60%)
 - Autosomal Dominant, rarely de novo
 - Mutation in the heterodimer self-association site
 - Usually missense mutations at highly conserved residues of spectrin
 - Can have “Founder effect”, distinct spectrin mutations in persons of similar genetic backgrounds
 - Phenotypes vary – modifier alleles
 - Elliptocytes w/ variable poikilocytes & cell fragments
 - Hemolysis is variable
Protein Defects

- **Protein 4.1 deficiency (20-30%)**
 - Smooth *elongated* elliptocytes with few poikilocytes
 - Caucasian, often asymptomatic
 - Autosomal Dominant

- **Spectrin β-chain binding site**
 - Elliptocytes (rounder), ± increased spherocytes
 - Asymptomatic, mild hemolysis,
 - Autosomal Dominant
Clinical Manifestations

- Varies, typically incidental diagnosis
- Erythrocyte life span – normal
- 10% have decreased RBC life span
 - Hemolysis
 - Anemia
 - Splenomegaly
 - Jaundice
 - Homozygotes or Compound heterozygotes
Laboratory findings

- 0-100% elliptocytes
- Normochromic, normocytic anemia
- Degree of hemolysis does not correlate w/ number of elliptocytes
- Elliptocytes can be seen other conditions -> May need to rule out other disorders
Treatment

- Rare overall; range from transfusion to splenectomy
- Indications for splenectomy: uncompensated hemolysis, including growth failure, skeletal changes, leg ulcers, extramedullary hematopoietic tumors, hemolytic, megaloblastic or aplastic crisis.
Hereditary Pyropoikilocytosis (HPP)

- Reminiscent of erythrocyte morphology seen after thermal burns
- Rare cause of severe hemolytic anemia
- 1/3 of family members with HPP have HE
- Many HPP patients have severe hemolytic anemia in childhood that evolves into typical HE later in life
Hereditary Pyropoikilocytosis

- Same mutations as in HE
- Present in the neonatal period with severe hemolytic anemia, RBC fragments, poikilocytes, elliptocytes, microspherocytes, hyperbilirubinemia
- Possibly homozygotes or multiple mutations
Hereditary Pyropoikilocytosis

- Complications: splenomegaly, frontal bossing, growth retardation, gallbladder disease
- Likely to evolve into typical mild HE
- Identification: usually family history and PBS
- Or controlled thermal stress test, osmotic fragility (normal in common HE, increased in HPP), molecular diagnostics. Usually not all of these are required
Treatment

- Folate supplement
- Monitor for formation of gallstones
- Monitor for hemolytic decompensation esp. after viral illnesses
- Try to avoid splenectomy until after 6 years
- Vaccinate against pneumocococcus
References