Platelet transfusion therapy

Orieji Illoh, M.D. January 23, 2007

The Eighteenth Century

Transfusions were done only sporadically, and were generally animal to human.

Transfusion was generally thought of as a cure for mental aberration or as a youth potion for the aged, rather than as a treatment for blood loss.

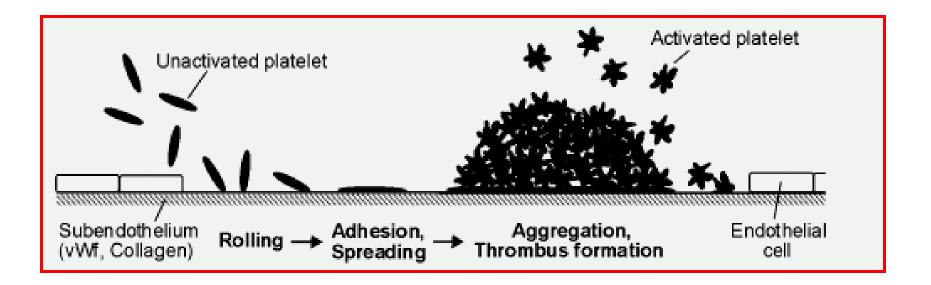
Reciprocal transfusions were suggested as a cure for marital discord.

Blood was thought to carry the characteristics of the donor to the recipient: sheep blood would make a dog grow wool, hooves, and horns; cat blood would make a girl feline, etc.

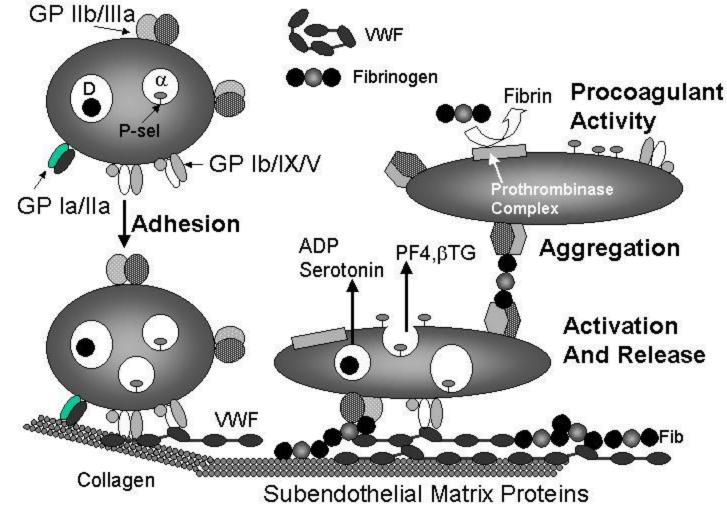
"The Platelet"

- Size: 1.5-3ບm
- Anuclear, discoid cell

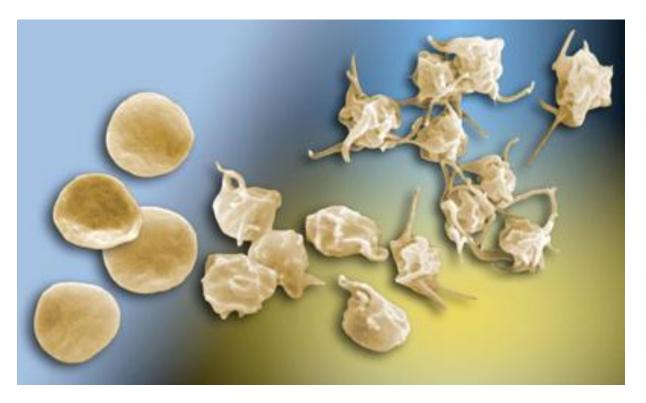
- Circulating life span: 9-10 days, about 4-5 days when infused.
- Platelet count: 130,000 450,000
- 7000 10,000/uL are consumed daily for routine plugging of minor endothelial defects


The Role of platelets in hemostasis

- Formation of the platelet and fibrin plug
 - Stages include
 - Platelet adhesion
 - Platelet activation and secretion
 - Platelet aggregation
 - Platelet associated coagulation
- Clot retraction and wound healing


Platelet adhesion, activation, aggregation and thrombus formation on subendothelial surface at an injured blood vessel.

Stefan Offermanns. Molecular pharmacology encref.springer.de/ mp/0001-01.gif

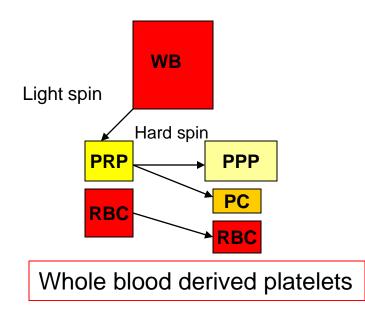


Platelet Activation

http://referencelab.clevelandclinic.org/images/PlateletAdhesionActiviationAggregation.jpg

Platelet Activation

colorized scanning electron microscope image of platelets in various stages of activation

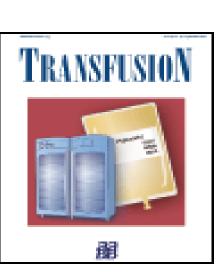

http://www.uphs.upenn.edu/news/News_Releases/may02/Laser.html

The platelet product

- 2 basic types
 - Whole blood derived (random donor platelets)
 - Platelet pheresis (single donor platelets)

http://www.bloodntissue.org/blooddonation_platelet.asp

Random donor and Platelet pheresis


Random donor \$ \$

- Minimum amount: 5.5x10¹⁰/unit
- 8x10⁷ leukocytes, <1ml RBC
- volume: 45-60 ml
- Maximal availability, Easy to collect
- Dose escalation possible
- Multiple donor exposures
- Matching not practical
- High RBC and WBC content

Platelet pheresis (Single donor) \$\$\$

- Minimum amount 3.0 x 10¹¹ /unit
- 10⁷ 10⁵ leukocytes, rare RBC
- Volume: 200-300ml
- Single donor exposure
- Matching is possible
- Low RBC and WBC content
- Limits platelet dose
- Limited availability
- Inconvenient for donor

Storage

Platelets were stored in the cold (1-6°C) in the 1950s and 1960s

- Cold temperatures decrease platelet survival after transfusion
- Platelets loose their discoid shape and become spherical when damaged by the cold
- Cooling causes clustering of the von Willibrand factor receptor complexes facilitating ingestion by hepatic macrophages

Storage

- Suspended in plasma and anticoagulant or platelet additive solutions.
 - Acid citrate dextrose is the anticoagulant of choice
- At 20-24 degrees
- Constant agitation
 - To prevent platelet activation and facilitate gas exchange
- Buffer to prevent drop in pH
- Permeable plastic containers
- Stored for 5 days

Infected platelet unit

http://www.blood.co.uk/hospitals/services/Micro/Bact1.htm

In attempt to prevent bacterial contamination...

- AABB- requires strategies to prevent bacterial inoculation and detection of bacterial growth during storage (since March 2004)
 - We use the pH test on random donor units
 - Blood center performs cultures on apheresis units

Platelet culture

The platelet storage lesion

- Decreased recovery and survival
- Altered morphology- decreased MPV, loss of disc shape, fragments
- apoptosis
- Altered glycoprotein lb
- Decreased content of α granules and dense bodies (due to platelet activation)
- Decreased function
- Lactic acid from glycolysis
- Decreased pH

The future of platelet storage

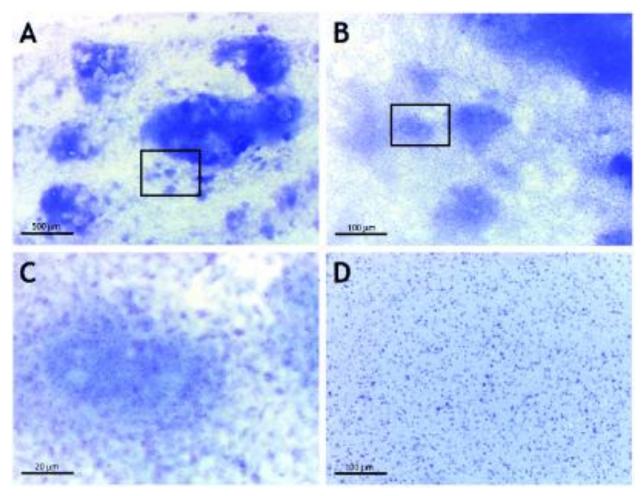
- Modifying platelets with galactose
- Use of inhibitors of actin filament assembly
- Use of calcium chelators
- Freezing
- Pathogen reduction technology

Selection of platelets for transfusion

- ABO antigens are weakly expressed on platelets
 - Can transfuse regardless of ABO type
 - Most adults will neutralize soluble antigenic A or B substances
 - ABO compatible units for smaller patients or repeated transfusions
 - Screen for anti A1 or anti B titers
 - Volume reduce

Rh compatibility

- Rh antigens are not expressed on platelets
- Passenger red blood cells may lead to alloimmunization to red cell antigens
- Adhere to Rh type in women of childbearing potential or issue Rh immunoglobin

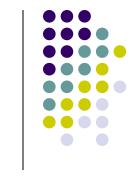

Selection of platelets for transfusion

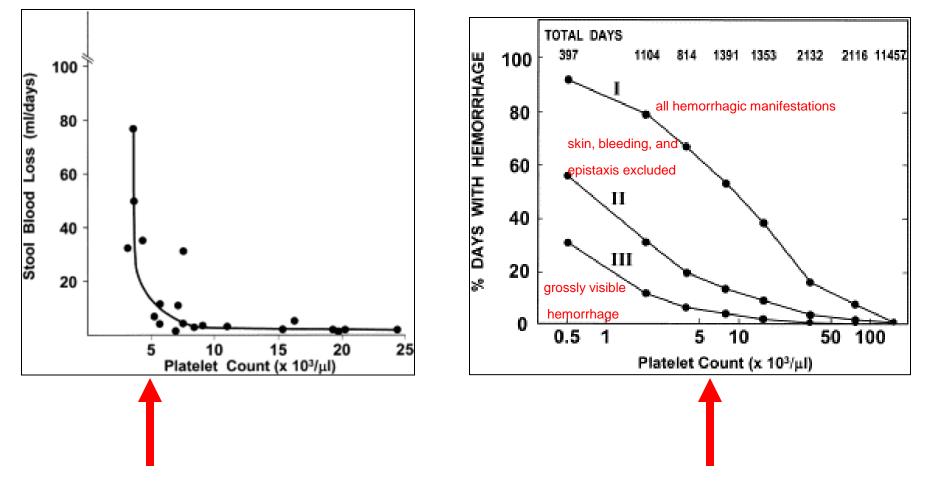
- May need to pool random donor platelets
 - Must be transfused within 4 hours
- Other modifications
 - CMV reduced risk
 - Leukocyte reduced
 - Irradiated
 - Volume reduced
 - washed

Volume reduced platelets

Transfusion 45 (5), 651-651.

Indications for Platelet transfusion


- Prophylactic transfusion
 - Severe thrombocytopenia
 - Before invasive procedure if thrombocytopenia is present
- Thrombocytopenic bleeding
- Dilutional thrombocytopenia
- Thrombocytopathy


Severe thrombocytopenia

- Most often seen in bone marrow failure
 - Acute leukemia
 - Acute promyelocytic anemia
 - Hematopoietic stem cell transplantation
 - After chemotherapy
 - Myelodysplasia
 - Aplastic anemia
- Numerous studies have been done to determine the threshold at which to transfuse platelets

Relationship between platelet count and bleeding risk in thrombocytopenic patients

Slichter, Trans. Med. Rev. 18:153-167, 2004

Some studies

First author	Patient population	20,000/µl threshold -	10,000/µl threshold	P value	Other observations
		bleeding	bleeding		
Heckman ⁴²	Acute Leukemia	Median of two episodes per	Median of four episodes	0.12	Fewer platelets transfu-
		patient	per patient		sions per patient in the
					10,000/µl arm; no bleeding
					deaths
Rebulla43	Acute myeloid leukemia	20% major bleeding	21,5% major bleeding	0,41	Fewer platelets given in
		, U	, ,		10,000/µl arm; 1 fatal bleed
					in the 10,000/µl arm
Zumberg ⁴⁴	Stem cell transplantation	17% major bleeding	14% major bleeding	0.66	No difference in platelet
Louisong	orem cen nanspananen	1770 major onevang	1110 major one dang	0,00	transfusions given in the
					two arms; no bleeding
					deaths

Optimizing platelet transfusion therapy*1. Blood Reviews, Volume 18, Issue 3, Pages 149-165 J. Heal, N. Blumberg

Current practice

- Threshold of 10 x 10⁹/L in the absence of risk factors
 - Risk factors include sepsis, bleeding, use of antibiotics, other hemostatic problems
- Threshold of 20 x 10⁹ if risk factors exist
- May need to manage on an individual basis in chronic stable thrombocytopenia

Invasive procedures

- Studies suggest that invasive procedures can be performed safely with a platelet count of 50,000/uL
- Higher threshold for neurosurgical and ophthalmic procedures (100,000/uL)
- Can perform bone marrow biopsies in patients with severe thrombocytopenia without platelet support

Thrombocytopenic bleeding

- Depends on site of bleed
- Higher threshold for CNS (100,000/uL)
- 50,000 or higher in other situations

Dilutional thrombocytopenia

- Occurs with massive transfusion
- Transfusion of colloids, crystalloids and RBC
- Replacement of one blood volume will reduce platelet concentration by half

Massive transfusion

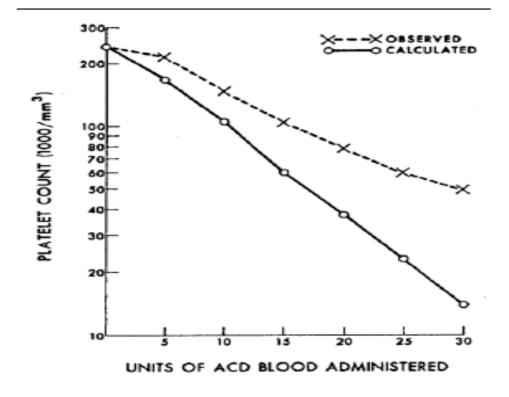


FIGURE 2 Calculated *vs* observed platelet counts in a person receiving platelet-free blood

Observed platelet counts are higher than those predicted by hemodilution alone: the observed platelet count after the administration of 25 units of blood is of the order of 60,000-mm⁻³ while hemodilution predicted a platelet count of approximately 20,000-mm⁻³. Reproduced with permission from *Miller RD*, *Robbins TO*, *Tong MJ*, *Barton SL*. Coagulation defects associated with massive blood transfusions. Ann Surg 1971; 174: 794–801.

Recommendations

- Only transfuse platelets if there is evidence of microvascular bleeding
 - In many cases platelets are given prophylacticaly

Thrombocytopathy

Congenital

Glanzman's thrombasthenia Bernard Soulier syndrome Storage pool defects Scotts syndrome Platelet factor V deficiency Others

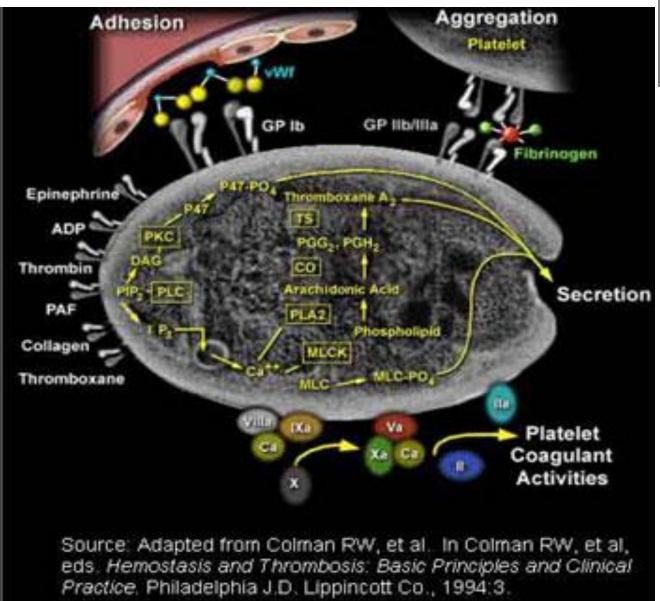
Acquired

Cardiopulmonary bypass Uremia Aspirin Clopidogrel (Plavix) Ticlopidine (Ticlid) Tirofiban (aggrastat) Abciximab (Reo Pro) Epifibatide (Integrillin)

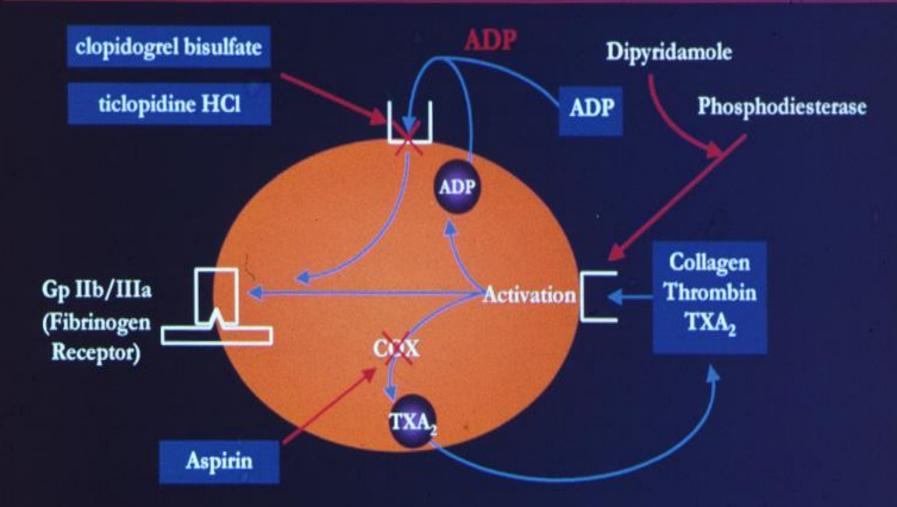
In hereditary platelet function disorders

- DDAVP will be useful in most defects
- Platelet transfusions especially if bleeding and thrombocytopenic, keep hematocrit above 35%
- Corticosteriods, ε- aminocaproic acid

Cardiopulmonary bypass


- Fall in platelet count
- Platelet function defect
- Studies do not support prophylactic transfusion, however, keeping the platelet count at 80,000- 100,000 may be beneficial

Uremia


- Drop in platelet count
- Defect in platelet function
- Transfused platelets become defective
- Other therapeutic options available including DDAVP, cryoprecipitate, conjugated estrogens

Activators of Platelets.

ORAL ANTIPLATELET AGENTS MECHANISM OF ACTION

ADP = adenosine diphosphate, TXA_2 = thromboxane A_2 , COX = cyclooxygenase. Schafer AI. *Am J Med.* 1996;101:199–209.

Aspirin

- Lack of Data but suggest platelet transfusion in bleeding due to aspirin
- Suggest stopping aspirin 3-10 days before surgery
 - Studies have shown that people who went into surgery less than 3 days after stopping aspirin used more blood products

Plavix (inhibits ADP induced aggregation)

- No consensus on when to stop the drug before surgery
- Patients with bleeding due to Plavix may have normal platelet counts
- Active metabolite persists after cessation of drug
 - Therefore in a bleeding patient, may need platelet transfusions 4-5 day after stopping the drug

Ticlid

(inhibits ADP induced aggregation)

- Half life 4-5 days
- Effect on platelet is irreversible
- Delay elective surgery for several days if possible
- May use more blood products if drug is still present

Platelet glycoprotein IIb/IIIa receptor antagonists

- Aggrastat, ReoPro, Integrillin
- Do not permanently impair platelets
- Platelet function returns within several hours for aggrestat and integrillin and 24- 48 hours for Reo Pro
- May need platelet transfusion in emergencies

Selective Serotonin Reuptake inhibitors

- Used to treat depression and other mood disorders
- Case reports of increased bleeding risks
 - Decreased platelet binding affinity
 - Blockade of intraplatelet calcium mobilization
 - Reduced platelet secretion in response to collagen
- Due to changes in the serotonin intraplatelet and plasma levels

Bleeding associated with SSRIs

- Usually not profound, superficial locations, Rarely require transfusions
- Hematomas, petechiae, bruising, epistasis
 - Intracerebral, GI, retroperitonial bleeding has been reported
- Increased risk of perioperative bleeding

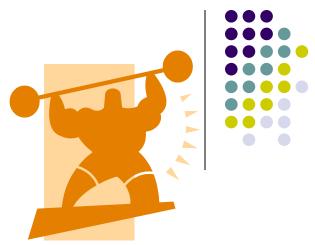
Splenomegaly

- May cause platelet sequestration
- Platelet transfusion rarely indicated

Immune thrombocytopenic purpura

 Platelet transfusion may be indicated in hemorrhagic emergencies (may need to hypertransfuse)

Contraindications to Platelet transfusion


- Autoimmune idiopathic thrombocytopenia purpura
- Thrombotic thrombocytopenia purpura
- Heparin induced thrombocytopenia
- Coagulopathy only
- Anatomic bleeding only

Standard Platelet doses

- Infants: 10ml/kg body weight
- Children: I unit (whole blood derived) for every 10-15kg body weight
- Adults: 4-8 units pooled or I unit pheresis

Expected Increment

	1 unit	4 units	6 units
50lb	22,000/uL	88,000/uL	132,000/uL
100lb	11,000/uL	45,000/uL	66,000/uL
150lb	7,400/uL	30,000/uL	44,000/uL
200lb	5,500/uL	22,000/uL	33,000/uL

Assessment of response

Cessation of hemorrhage

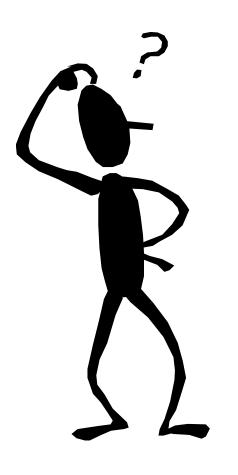
Post transfusion count

- Dependent on size
- Initial platelet count
- Dose given
- One third transfused platelets will remain in the spleen

Corrected count increment (CCI)

- Takes into account the body surface area of the patient
 - Need to obtain platelet count within 10 minutes to 1hour of transfusion
- CCI = <u>platelet increment/uL x BSA (m²)</u> number of platelets transfused(x10¹¹)

CCI


• Expected CCI should be > 7500

 If less than 7500 on at least 2 occasions, the patient is declared refractory to platelet transfusions

Platelet refractoriness

Immune

Non Immune

Non Immune Causes

- Platelet quality: dose, washed, filtered
- Platelet age: slightly better increments with fresh platelets
- Massive bleeding
- Splenomegaly
- DIC
- Fever
- Bone marrow transplantation
- Graft vs host disease
- Amphotericin
- TTP
- Other drugs

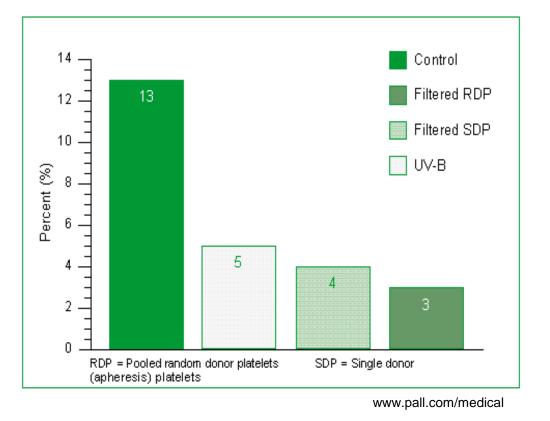
Immune causes

- ABO incompatibility
- HLA incompatibility
- HPA incompatibility
- Autoantibodies
- Drug induced antibodies
- Passively acquired antibodies

HLA Alloimmunization

- Platelets bear ~70% of whole blood load of class I HLA-A and HLA-B antigen
- Do not express class II antigens
- Donor leukocytes (have both class I and II) provide a source of antigen presenting cells
 - Hence the usefulness of leukocyte reduction!

TRAP Study



- Population: patients with newly diagnosed AML Control group
 - received random platelets

Treatment group

- Pooled platelets leukocyte reduced by filtration
- Pooled platelets with ultraviolet irradiation
- Apheresis platelets- leukocyte reduced
- All RBC units were leukocyte reduced

TRAP study

✓ Less HLA alloimmunization in all treatment groups compared to the control group

- ✓No differences between study groups
- Low incidence of bleeding in all groups
- Recommend filtered components for all AML patients

Leukocyte reduction

- Achieved by filtration or UV irradiation
- Less than 5 x 10⁶ leukocytes
- Filters will remove 99.9% leukocytes

Management of Platelet refractoriness

- Non Immune
 - Treat or eliminate cause
 - Transfuse platelets only if necessary

Management of Platelet refractoriness

- Immune causes
 - Give ABO compatible platelets
 - HLA alloimmunization
 - HLA matched platelets
 - HLA antigen mismatch
 - Platelet crossmatch
 - Unselected platelets

ABO compatible platelets

- Especially a problem in recipients with high titers of anti A or anti B
- ABO density on platelets might be a contributing factor
 - A2 platelets contain 40 fold less of A antigen
- Pathogenesis: formation of immune complexes with soluble A and B substance
- Try ABO compatible

HLA alloimmunization

- Usually occurs 3-4 weeks after first transfusion
- Following pregnancy

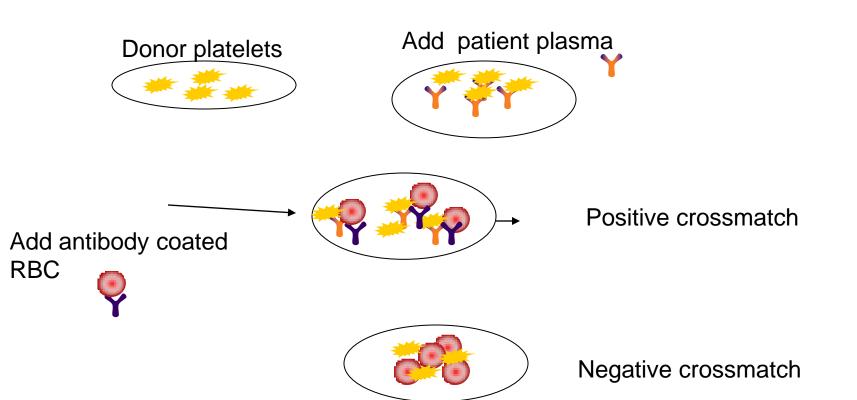
HLA matching

- Improves platelet recovery
- Need to know patient and donor HLA type
- antibody specificity
- Can grade HLA matching based on number of antigens matched
- 80% patients will benefit

HLA antigen mismatch

- Characterize patient antibody
- Give platelets negative for the antigen

Return to unselected platelets


 HLA antibodies may disappear after one week to several months

Platelet crossmatch

- Can select concentrate irrespective of nature of alloimmunization
- Use ABO compatible platelets
- Can select from a larger pool of donors
- Found to be equivalent to HLA matching
- Several methodologies available
 - Solid phase red cell adherence, flow cytometry, immunofluorescence, complement fixation

Platelet crossmatch using solid phase technology

When all fails in HLA alloimmunization

- Other causes ?
- If you tried HLA matched, try crossmatched or the reverse
- Antifibrinolytics
- Massive platelet transfusion
- IVIG
- Plasmapheresis?
- Immunoadsorbtion
- Immunosuppressive therapy
- HLA stripped platelets
- Thrombopoetin and platelet growth factors

Alternatives to Platelet Transfusion

Cytokines

- Recombinant human thrombopoietin
- Human recombinant IL-6
- Interleukin 3
- Interleukin 11
- Amifostine
- Antifibrinolytics

Platelet substitutes

- Lyophilized or freeze dried fixed platelets
 - Undergoing phase I and II studies
- Infusible platelet membrane
 - Can reduce bleeding time, under development
- Modified autologous rbc with covalently bound fibrinogen or peptide sequences
- Fibrinogen coated albumin microcapsules (synthocytes)
- Polyamide microcapsules

Complications of Platelet transfusion

- Disease transmission
 - Bacterial
 - Viral
 - Others
- Immune related
 - Febrile non hemolytic transfusion reaction
 - Allergic reactions
 - Transfusion related acute lung injury
 - Transfusion associated graft versus host disease

Summary

- Different platelet products available
- Storage time is a limitation for availability
- Transfusion thresholds exist but may vary with the patient
- Refractoriness can limit effectiveness
- Leukoreduction can reduce the risk of alloimmunization
- Several drugs can cause platelet dysfunction