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Introduction

Whole slide imaging (WSI) is increasingly used for research 
and education. Several efforts are being made to incorporate 
this technology into clinical work. A digital workflow requires 
additional equipment, such as an FDA-approved slide scanner, 
image storage, and a digital viewing workstation. Additionally, 
trained personnel and proper quality controls are needed. A 
pathology validation study conducted at Memorial Sloan Kettering 
Cancer Center to assess the pathologist’s comfortability to render 
a primary diagnosis digitally in 2020 showed that 90% and 60% 
of pathologists were comfortable rendering a primary diagnosis 
digitally with and without access to glass slides, respectively. 
These numbers continue to increase as this technology becomes 
more broadly available to pathologists and trainees, reassuring 
the field about adopting new technologies. WSI systems have 

four main elements: a light source, a microscope with multiple 
lenses, a digital camera, and a system for repositioning the camera 
view along the tissue. The images can be scanned at different 
magnitudes, 20x and 40x being the most common. WSI scanners 
can use various modes, such as bright-field, fluorescent, and 
multispectral imaging [1-3].

Digital image analysis (DIA) offers features that can improve 
diagnostic accuracy and efficiency. On a digitized slide, histologic 
assessment using DIA demonstrates that cells can be classified 
by type and components, such as nuclei or cytoplasm. Moreover, 
areas of interest in the tissue can be mapped by shape or cell 
morphology and topology. The extraction of features from the 
tissue can be performed at different magnifications [4]. DIA 
still needs to overcome specific challenges; from a technical 
standpoint, it may be affected by different staining processes, as 
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well as the fact that there is an unmet need to standardize the 
image acquisition process. Another aspect is the variation of 
tissue features in the setting of inflammation or malignancy, 
etc. Equally important is the biological variability of cellular and 
tissue features. Moreover, the size of the images, which rely on 
magnification and sensor pixel size, requires a significant amount 
of image storage [5]. Several platforms have been developed to 
overcome these challenges. These platforms can be divided into 
closed-source and open-source platforms, which can visualize, 
store, and analyze WSI. These platforms offer many processing, 
segmentation, and feature extraction tools with enough room to 
maximize their benefits [6-7].

Deep learning (DL) is a type of machine learning that encompasses 
different kinds of algorithmic formats such as convolutional 
neural network (CNN), recurrent neural network (RNN), long 
short-term memory (LSTM), and extreme learning model (ELM) 
[8]. DL has proven effective and reliable when applied in the 
medical field. The neuron is the fundamental unit; DL contains 
multiple layers of neurons, which allow high levels of abstraction 
and superior predictions from data input. Increasing the number 
of layers can enable more features to be detected and learned [9]. 
CNN is the algorithmic subtype that has gained recognition as 
the gold standard in image analysis with the adoption of parallel 
processing; as more efficient computing time has been achieved 
by performing all similar matrix operations simultaneously as 
opposed to linear sequences [10]. The core element of a CNN 
algorithm is convolution, which works by processing images using 
kernels (filters) to detect features of an image. The kernels move 
across the input to generate a feature map as a filtered image. 
The convolutional layers extract the features from an image 
patch to higher-level features, followed by the max-pooling layers 
to summarize data from the feature detection layer, reducing 
the computation in the network and leading to the result of 
predictions based on the given features [11].

The field of hematopathology has undergone significant 
evolution. The diagnostic process requires fine morphological 
skills in conjunction with precise interpretation of 
immunohistochemistry, flow cytometry, cytogenetics, and 
molecular testing. Integrating these elements to render a diagnosis 
of a hematolymphoid malignancy can be both challenging 
and stressful. Diagnosing a lymphoproliferative neoplasm will 
determine the course of action to be carried out by the clinicians, 
aiming for the best patient’s outcome. The global prevalence of 
all types of lymphoma is estimated to be about 545,000 cases 
each year [12]. These neoplasms encompass various conditions, 
ranging from indolent neoplasms to aggressive lymphomas. By 
histological assessment, several entities share morphological and/
or architectural features, which can mislead the hematopathologist 

into the wrong diagnostic pathway, causing delayed or incorrect 
diagnosis and significantly impacting patient care. Another 
challenge is that hematopathologists are expected to render a 
diagnosis with smaller specimens, with high workloads due to 
the shortage of hematopathologists. Consequently, applying DL 
in clinical practice could improve efficiency, diagnostic precision, 
and the service’s management. Our study aimed to develop a DL 
algorithm to differentiate between classical Hodgkin lymphoma 
(CHL) and anaplastic large-cell lymphoma (ALCL), both having 
complex morphologic features.

Materials and Methods

We conducted a retrospective compilation of cases with newly 
diagnosed CHL and ALCL by current World Health Organization 
criteria at our institution from 2017 to 2024 [13]. We reviewed 
the morphological characteristics of each case and selected the 
hematoxylin and eosin- (H&E) stained slides from 20 cases, which 
were scanned using the SG60 scanner (Philips Corporation, 
Amsterdam, Netherlands) at 40x magnification. The SG60 
scanner has capacity for 60 glass slides, produces high-quality 
images, full automation (for focus, calibration, brightness and 
contrast settings), with tissue shape detection to outline and scan 
non-rectangular regions of interest for shorter turnaround times. 
The total scan time of a slide for a 15 × 15 mm benchmark scan 
area at a 40x resolution is ≤ 62 seconds. The images were acquired 
and stored in iSyntax2 format). Philips Image Management 
System was used to display the images. From each WSI, 60 
image patches of 100x100 pixels (at 20x magnification, 0.5 μm/
pixel) were obtained for feature extraction with SnagIt software 
(TechSmith Corp, Okemos, Michigan, USA). Each image patch 
is represented as a 100x100 matrix (100 rows and 100 columns) 
representing the intensity of 10,000 pixels. The image file was 
subsequently converted into a one-dimensional file with 30,001 
entries; the first entry in the file stores the diagnostic label of the 
image, and entries from 2 to 30,001 store all the pixel intensity 
values (10,000 for each of the 3 color channels, Red-Green-Blue). 
A total of 1200 image patches were obtained from which 1079 
(90%) were used for training, 108 (9%) for validation, and 120 
(10%) for testing. The cases were divided into two cohorts, with 
10 cases for each diagnostic category. For each test set of 5 images, 
the expected diagnosis was combined from the prediction of five 
images, i.e., at least three or more must agree to be considered as 
the predicted result (Figure 1). Our algorithm (with CNN model 
outlined in Figure 2) was written in Python using TensorFlow 
and Keras libraries [14, 15]. Parallel processing was performed 
using an NVIDIA GPU with compute unified device architecture 
(CUDA) [16]. The output was evaluated for diagnostic accuracy. 
This study was approved by the Institutional Review Board Ethics 
Committee per the Declaration of Helsinki.
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Figure 1: Case compilation, scanning, and feature extraction.

Figure 2: Algorithm written in Python in addition to TensorFlow and Keras libraries. Parallel processing was performed 
using NVIDIA GPU with compute unified device architecture (CUDA).

Results

Our model was trained and optimized for testing. It showed 
a diagnostic accuracy of 100% for both image-by-image and 
100% for set-by-set prediction. Our preliminary study provided 
proof of concept for incorporating an automated lymphoma 
diagnostic screening model to help classify cases with challenging 
morphological features. We are confident these algorithms can 
be incorporated into future pathology workflows to augment 
hematopathologists’ productivity and diagnostic accuracy.

Discussion

Hematopathologists face challenges when diagnosing 
lymphoproliferative neoplasms due to overlapping morphological 
features that could lead to misclassification. Their role in patient 
care is critical; in the era of precision medicine. They are expected 
to be efficient, accurate and often have cases to diagnose with 
small specimens. CHL typically comprises large cells with large 
nuclei and prominent eosinophilic nucleoli, including the 



21st Century Pathol-4-159 Page 4 of 8Volume 4, Issue 1Rivera D, et al.

Citation: Rivera D, Ali K, Zhang R, Mai B, El Achi H, et al., (2024) Deep Learning-Based Morphological Classification between Classical Hodgkin 
Lymphoma and Anaplastic Large Cell Lymphoma: A Proof of Concept and Literature Review, 21st Century Pathology, Volume 4 (1): 159

binucleated/multi-nucleated forms called Reed-Sternberg cells. 
The latter represent a minority of the neoplastic population. It 
is essential to render this diagnosis accurately because modern 
chemotherapy regimens achieve a cure rate of more than 80%. 
In contrast, ALCL is a mature T-cell neoplasm composed of large 
pleomorphic cells with abundant cytoplasm, and horseshoe/
reniform nuclei with multiple nucleoli. This entity can mimic 
Reed-Sternberg cells and must be precisely distinguished because 
it can have more aggressive behavior and a lower cure rate than 
that of CHL [13]. Our study is the first to bring new insights 
into the applicability of a DL algorithm capable of performing 
morphological classification between CHL and ALCL, providing 
high diagnostic accuracy. 

Over the years, several studies have shown the beneficial impact 
of implementing this technology in diagnosing lymphomas (Table 
1). El Achi H, et al. (2019) (our DL research group) developed a 
DL model to differentiate between benign lymph nodes, diffuse 
large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and 
small lymphocytic lymphoma (SLL). Four sets of 5 representative 
images, 40x40 pixels in dimension, were taken for each of 128 
cases. A total of 2,560 images were obtained from which 1,856 
were used for training, 464 for validation, and 240 for testing. 
The algorithm showed an accuracy of 95% for image-by-image 
prediction and 100% for set-by-set prediction [17]. Syrykh C, et al. 
(2020) evaluated the differences between follicular lymphoma (FL) 
and follicular hyperplasia (FH) on WSI scans from H&E-stained 
slides using a Bayesian neural network (BNN) and generated an 
overall accuracy of 91% with an area under the curve (AUC) 
of 0.99 [18]. Miyoshi H, et al. (2020) aimed to classify DLBCL, 
FL, and FH using DL on WSI scans. This classifier achieved 
the highest level of accuracy of 94%, 93%, and 92% for image 
patches with magnifications of x5, x20, and x40, respectively. 
They were also comparing the accuracy of the classifier to that 
of the pathologists. The accuracy of the classifier was 97%, 
whereas the pathologists achieved a lower accuracy of 83.3% [19]. 
Zhang J, et al. (2020) developed a model that included transfer 
learning using VGG-16 [20]. This method achieved an average 
five-fold cross-validation accuracy of 100%, 99.7%, and 99.2% to 
classify FL, chronic lymphocytic leukemia (CLL), and mantle cell 
lymphoma (MCL). Swiderska-Chadaj, et al. (2021) tested a DL 
model to predict the MYC translocation based on morphology on 
287 cases of DLBCL from 11 hospitals; this algorithm achieved a 
sensitivity of 0.93 and specificity of 0.52; the authors concluded 
that their prediction model could save 34% of genetic testing [21]. 
Zhang X, et al. (2021) analyzed 374 WSI images, including CLL, 
FL, and MCL, and explored techniques to develop a diagnostic 
model based on recurrent neural network (RNN). The data was 
pre-processed using image flipping, color transformation, and 
other enhancement methods before inputting the data into the 

ResNet-50 network. The accuracy achieved with this algorithm 
was 98.63% [22]. Steinbuss G, et al. (2021) extracted images of 
WSI scans from H&E-stained slides from 629 patients to train 
and optimize an EfficientNet CNN algorithm, using Python 
libraries, with TensorFlow and R, on 84,139 image patches to 
classify SLL/CLL and DLBCL. The optimized model achieved an 
accuracy of 95.56% on an independent test set, including 16,960 
image patches [23]. Yu WH, et al. (2021) developed a DL model 
to classify primary intestinal T-cell lymphomas and 40 WSIs were 
used to train the detection and segmentation of the nuclei of 
lymphocytes. The segmented cells were used to train a hybrid task 
cascade-region based convolutional network (HTC-RCNN) with 
ResNet50 as the backbone model. A decision tree-based machine 
learning (ML) algorithm, XGBoost, was trained to classify 
these lymphomas into two subtypes, including monomorphic 
epitheliotropic intestinal T-cell lymphoma (MEITL) versus 
intestinal T-cell lymphoma not otherwise specified (ITCL-NOS) 
to achieve an AUC of 0.966 [24]. Karabulut YY, et al. (2023) 
used a DL model to distinguish cases of mycosis fungoides (MF) 
versus non-MF cases by detecting the nuclei on WSI scans of 
H&E-slides. Ten nuclear properties were statistically significantly 
different between these two entities. Their lymphocyte detection 
model had an average prediction power of 90.5%, and the MF 
detection power algorithm showed an average prediction power of 
94.2% [25]. Perry C, et al. (2023) trained a DL model using images 
of biopsies of aggressive B-cell lymphomas to screen and classify 
cases requiring FISH testing. This model showed a sensitivity of 
100% and specificity of 87%, with an AUC of 0.95. This model 
presented a proof of concept of the applicability of this model 
as a screening tool when FISH analysis is limited [26]. Naji H, et 
al. (2024) proposed a HoVer-Net-base DL model for lymphoma 
segmentation to train a mask R-CNN model on WSI scans from 
H&E and immunohistochemistry (IHC) stained slides, achieving 
an F1 score of 0.899 and 0.913, respectively. The authors stated 
that their findings show potential improvement in lymphoma 
morphology and microenvironment assessment [27]. Lee JH, et al. 
(2024) worked on a prediction model with DINO (Self-distillation 
with no labels), a self-supervised architecture employing ViT-S/8, 
and multiple instances of learning (MIL) to evaluate pathological 
features in 216 cases of DLBCL status post-chemotherapy. The 
model yielded an AUC of 0.856, and these data highlight the 
potential applicability of the DL model as a diagnostic and 
prognostic tool for managing DLBCL [28]. Tagami M, et al. (2024) 
developed a screening DL model using PyTorch packages with 
pre-trained models and transfer learning to distinguish between 
IgG4-related ophthalmic disease (IgG4-ROD) and orbital mucosa-
associated lymphoid tissue (MALT) lymphoma. Scans from H&E-
stained slides were acquired, and the model after fivefold cross-
validation achieved 73.3% accuracy with an AUC of 0.807 [29]. 
Zhang X, et al. (2024) developed and validated a DL model using 
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Table 1: Deep learning experience for the diagnosis of lymphoma.

LGNet for intraoperative diagnosis to distinguish primary central 
nervous system lymphoma (PCNSL) from other brain tumors by 
acquiring images from WSIs of frozen sections from different 
cohorts; this algorithm achieved an AUC of 0.981 and 0.993. The 
author concluded that the model outperforms some pathologists, 

and it does assist pathologists, irrespective of their experience, in 
improving diagnostic accuracy. Notably, the model also improves 
diagnostic accuracy in discriminating PCNSL from non-PCNSL, 
especially glioma (Table 1) [30].

Reference
Number of 

cases/images
Cohorts by disease Algorithm format Results

El Achi (PMID 

31028058)
128 cases

Benign LN  

DLBCL 

BL 

SLL

CNN with TensorFlow and 

Keras libraries

95% accuracy 

image by image 

100% accuracy set 

by set

Syrykh (PMID 

32377574)
378 cases

FL 

FH
CNN and BNN

91% accuracy 

AUC 0.99

Miyoshi (PMID 

32472096)
388 cases

DLBCL 

FL 

FH

CNN accuracy > 92% 

Zhang J (PMID 

32593219)
374 images

CLL  

FL  

MCL

CNN with transfer learning 

using VGG-16, TensorFlow, and 

Keras libraries

accuracy > 99%

Swiderska-Chadaj 

(PMID 32979109)
287 cases DLBCL CNN (U-net)

93% sensitivity 

52% specificity

Zhang X (PMID 

33682770)
374 images

CLL  

FL  

MCL

RNN using ResNet-50 98.6% accuracy

Steinbuss G 

(PMID 34067726)
629 cases

SLL/CLL  

DLBCL

CNN using EfficientNet with R 

and TensorFlow libraries
95.5% accuracy

Yu WH (PMID 

34771625)
40 cases

MEITL  

ITCL-NOS

HTC-RCNN with ResNet50  

XGBoost model
AUC 0.966

Karabulut (PMID 

36571610)
18 cases

MF 

non-MF
CNN using sci-kit learn library

94.2% prediction 

power

Perry (PMID 

37958379)
57 cases

Double/triple hit 

lymphomas
CNN adding MIL

100% sensitivity 

87% specificity 

AUC 0.95
Naji (PMID 

38237235)
379 images DLBCL

Mask R-CNN using HoLy-Net 

for segmentation

F1 score of 0.899  

F1 score of 0.913

Lee (PMID 

38584594)
216 cases DLBCL

A model with DINO 

architecture employing ViT-S/8 

and MIL

AUC 0.856

Tagami (PMID 

38700592)
127 cases

IgG4-ROD 

Orbital MALT

CNN using PyTorch packages 

with pre-trained models and 

transfer learning

73.3% accuracy 

AUC 0.807

Zhang X (PMID 

38704409)
1186 cases

PCNSL 

non-PCNSL
CNN using LGNet

AUC 0.981 and 

0.993
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Despite the limited number of cases in our current study, the 
results provided a proof of concept using a deep learning algorithm 
with high diagnostic accuracy to distinguish 2 lymphomas with 
challenging morphological features. This model has demonstrated 
its potential to significantly impact the diagnosis of lymphomas. By 
leveraging its ability to learn complex patterns from large datasets 
of WSI, DL models can accurately classify lymphoma subtypes 
and could significantly assist hematopathologists. While progress 
has been made, several challenges and limitations remain to be 
addressed. Ensuring the quality and diversity of training datasets 
is crucial for model performance. Moreover, the interpretability 
(reasoning algorithm) of these models remains a challenge. 
Overcoming these obstacles will be essential for its broad adoption 
in clinical practice. DL offers a promising avenue for improving 
accuracy, efficiency, and consistency in the pathologist’s practice.

Conclusion

Despite the limited number of cases, our study demonstrates 
the effectiveness of a DL model in distinguishing complex cell 
morphology of classical Hodgkin lymphoma and anaplastic 
large-cell lymphoma, achieving 100% diagnostic accuracy. 
This high level of accuracy suggests that DL could serve as a 
powerful, supportive tool in lymphoma diagnosis, potentially 
reducing diagnostic variability and enhancing the efficiency of 
histopathological workflows. 

There is a potential role for this DL model in clinical work as 
a QA tool. If the predicted diagnosis agrees with the histologic 
diagnosis by the pathologist, a final diagnosis can readily be 
confirmed. Otherwise, the case under consideration can be 
re-examined to ensure that no diagnostic features have been 
missed. In this way, the DL model serves as an extra checking 
step to help improving the diagnostic accuracy. Adopting DL 
models for lymphoma diagnosis could bring significant clinical 
benefits, particularly in challenging or ambiguous cases. DL-
based systems could reduce diagnostic delays, improving patient 
outcomes. Furthermore, adopting DL in routine practice could 
alleviate the workload of hematopathologists. Integrating DL 
into diagnostic workflows might also enhance inter-laboratory 
consistency, especially in settings with limited access to specialized 
pathology expertise. Overall, this technology holds promise for 
improving the diagnostic accuracy and standardization of care in 
lymphoproliferative neoplasms.
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