AML, Not Otherwise Categorized (NOC)
AML, Not Otherwise Categorized (NOC)

- Do not fulfill criteria for insertion into a previously described category
AML, (NOC)

- Blast percentage in bone marrow determined from a 500 cell differential count
- Peripheral blood differential count should include 200 leukocytes
AML, Not Otherwise Categorized (NOC)

Basis for Classification

- Morphology
- Cytochemical features
- Maturation
AML, (NOC)

Blast Equivalents

- Promyelocytes in APL
- Promonocytes in AML with monocytic differentiation
- Megakaryoblasts
Type I blasts
Type II blasts
Type III blasts
Acute Myeloblastic Leukemia, Minimally Differentiated
Acute Myeloblastic Leukemia, Minimally Differentiated

Synonym

- FAB: Acute Myeloid Leukemia, M0
- 5% of all AMLs
- Mostly adults
Acute Myeloblastic Leukemia, Minimally Differentiated

- No evidence of myeloid differentiation by morphology or light microscopy cytochemistry
- Myeloblast nature determined by immunologic markers and ultrastructural studies (ultrastructural cytochemistry)
Acute Myeloblastic Leukemia, Minimally Differentiated

- Patients present with marrow failure
- Anemia
- Neutropenia
- Thrombocytopenia
- May be leukocytosis and increased blasts in peripheral blood
Acute Myeloblastic Leukemia, Minimally Differentiated

Morphology

- Medium sized blasts (less often smaller)
- Round (or slightly indented) nucleus
- Dispersed nuclear chromatin (less often condensed)
- One or two nucleoli (less often inconspicuous)
Acute Myeloblastic Leukemia, Minimally Differentiated

Morphology

- Agranular cytoplasm (varying basophilia)
- No Auer rods
- Bone marrow usually hypercellular
AML M0
AML M0

Negative MPO
Acute Myeloblastic Leukemia, Minimally Differentiated

Cytochemistry

- Myeloperoxidase (MPO), Sudan Black B (SBB), and naphthol ASD chloroacetate esterase cytochemical stains are all negative (less than 3% positivity in all blasts)
Acute Myeloblastic Leukemia, Minimally Differentiated

Cytochemistry

- Alpha naphthyl acetate esterase and alpha naphthyl butyrate esterase stains are all negative (no monocytic differentiation)
Acute Myeloblastic Leukemia, Minimally Differentiated

Ultrastructural Cytochemistry

- More sensitive
- MPO activity in small granules, endoplasmic reticulum, Golgi area, and/or nuclear membranes
Acute Myeloblastic Leukemia, Minimally Differentiated

Immunophenotype

- CD34+, CD117+, HLA-DR+, CD13+, CD33+, TdT+ (in one-third)
- Negative for B and T restricted markers (cCD3, cCD79a, cCD22)
Acute Myeloblastic Leukemia, Minimally Differentiated

Immunophenotype

- Negative for myelomonocytic differentiation markers (CD11b, CD15, CD14, CD65)
- CD7, CD2, CD19 occasionally weakly positive (lymphoid differentiation)
Acute Myeloblastic Leukemia, Minimally Differentiated

Genetics

- None specific
- Complex karyotypes, trisomy 13, trisomy 8, trisomy 4, monosomy 7
Acute Myeloblastic Leukemia, Minimally Differentiated

Differential Diagnoses

- ALL
- Acute megakaryoblastic leukemia
- Biphenotypic/mixed lineage acute leukemias
Acute Myeloblastic Leukemia, Minimally Differentiated

- Poor prognosis
- Lower remission rate
- Shorter survival
Acute Myeloblastic Leukemia without Maturation
Acute Myeloblastic Leukemia without Maturation

Synonym

- FAB: Acute Myeloid Leukemia, M1
Acute Myeloblastic Leukemia without Maturation

- Blasts greater than or equal to 90% of non-erythroid nucleated cells
- Granulocytic elements <10%
- No maturation
- MPO or SBB positivity >3% of blasts
- Auer rods may be present
Acute Myeloblastic Leukemia without Maturation

- 10% of all AMLs
- Adults (but can occur at any age)
- Median age: 46 years
Acute Myeloblastic Leukemia without Maturation

Presentation

- Bone marrow failure
- Anemia
- Thrombocytopenia
- Neutropenia
- Leukocytosis with increased blasts in blood
Acute Myeloblastic Leukemia without Maturation

Morphology

- Bone marrow usually hypercellular
- Azurophilic granules and/or Auer rods
- (Some blasts may resemble lymphoblasts)
AML M1
AML M1
AML, M1
AML, M1
Acute Myeloblastic Leukemia without Maturation

Differential Diagnoses

- ALL when granules are absent and MPO+ is low (but at least 3%)
- AML with maturation (when blasts are high)
Acute Myeloblastic Leukemia without Maturation

Immunophenotype

- CD13+, CD33+, CD117+, MPO+ (at least 2 of these myelomonocytic markers)
- CD11b-, CD14- (monocytic markers)
- CD3-, CD20-, CD79a- (lymphoid markers)
Acute Myeloblastic Leukemia without Maturation

Genetics

- No specific recurrent chromosome abnormalities
Acute Myeloblastic Leukemia without Maturation

- Aggressive course and poor prognosis
Acute Myeloblastic Leukemia with Maturation
Acute Myeloblastic Leukemia with Maturation

Synonym

- FAB: Acute myeloid leukemia, M2
Acute Myeloblastic Leukemia with Maturation

- At least 20% blasts in bone marrow or blood (but less than 90%)
- Granulocytic elements at least 10% of non-erythroid cells
- Monocytic elements <20% of non-erythroid cells
Acute Myeloblastic Leukemia with Maturation

- 30-45% of all AMLs
- All ages
- 20% < 25 years
- 40% are 60 years or older
Acute Myeloblastic Leukemia with Maturation

- Anemia
- Thrombocytopenia
- Neutropenia
- Variable number of blasts in blood
Acute Myeloblastic Leukemia with Maturation

Morphology

- Bone marrow hypercellular
- Blasts with or without granules
- Auer rods frequent
- Various degrees of dysplasia
- Eosinophils and basophils may be increased
M2 morphology
AML, M2
Acute Myeloblastic Leukemia with Maturation

Differential Diagnoses

- RAEB (if blast numbers are at lower limit)
- AML without maturation (if blast numbers are at upper limit)
- AMML (when monocytes are increased)
Acute Myeloblastic Leukemia with Maturation

Immunophenotype
- CD13+, CD33+, CD15+
- Often CD34+, CD117+, HLA-DR+
Acute Myeloblastic Leukemia with Maturation

Genetics

- del(12)(p11-p13) associated with increased basophils
- t(6;9)(p23;q34) (DEK/CAN fusion gene)
- t(8;16)(p11;p13) associated with erythrophagocytosis
Acute Myeloblastic Leukemia with Maturation

- Responds frequently to aggressive therapy
- t(6;9)(p23;q34) have poorer prognosis
Acute Myelomonocytic Leukemia (AMML)
Acute Myelomonocytic Leukemia (AMML)

Synonym
- FAB: Acute myeloid leukemia, M4
AMML

- Blasts at least 20%
- Granulocytic elements at least 20% of non-erythroid cells in bone marrow
- Monocytic elements at least 20% of non-erythroid cells in bone marrow (if <20% but circulating monocytes at least 5×10^9/L, Dx still AMML)
AMML

- Anemia
- Thrombocytopenia
- Fever
- Fatigue
- Variable circulating blasts
AMML

- 15-25% of all AMLs
- Older individuals
- Median age: 50 years
- Male-to-female ratio 1.4:1
AMML

Morphology

- Monoblasts – round nuclei, lacy chromatin, one or more prominent nuclei. Abundant basophilic cytoplasm. Pseudopods. Some granules and vacuoles.

Monoblasts, promonocytes
Monoblasts
Promonocytes
AMML

Morphology

- MPO+ (at least 3% of blasts)
- Monocytic elements non-specific esterase +
- Morphology sufficient criterion for monocytic cells (even if esterase negative)
- Double staining for MPO and esterase can be present
AMML
Butyrate
AMML

Differential Diagnoses

- AML with maturation
- Acute monocytic leukemia
AMML

Immunophenotype

- CD13+, CD33+ (myeloid)
- CD14+, CD4+, CD11b+, CD11c+, CD64+, CD36+, lysozyme+ (monocytic)
- [CD34+ (residual cells)]
AMML

Genetics

- Non-specific
- Specific abnormalities are under AML with recurrent genetic abnormalities, such as (inv)16 or 11q23
AMML

- Frequently responds to aggressive therapy
- Variable survival rates
Acute Monoblastic/Monocytic Leukemia
Acute Monoblastic/Monocytic Leukemia

Synonyms

- FAB: Acute monoblastic leukemia, M5a
- FAB: Acute monocytic leukemia, M5b
Acute Monoblastic/Monocytic Leukemia

- At least 80% of non-erythroid cells are monoblasts, promonocytes, and monocytes
- Promonocytes are blast equivalents
- Granulocytic elements <20%
Acute Monoblastic/Monocytic Leukemia

- Acute monoblastic leukemia – at least 80% monoblasts
- Acute monocytic leukemia – less than 80% monoblasts
Acute Monoblastic/Monocytic Leukemia

- 5-8% of all AMLs
- Young individuals (but at any age)
- In infancy often with 11q23
- Extramedullary lesions possible
Acute Monoblastic/Monocytic Leukemia

- 3-6% of all AMLs
- Adults
- Median age: 49 years
- Male-to-female ratio 1.8:1
Acute Monoblastic/Monocytic Leukemia

- Bleeding disorders most common presentation
- Cutaneous and gingival infiltration
- CNS involvement
- Extramedullary masses
Acute Monoblastic/Monocytic Leukemia

- Non-specific esterase activity strongly positive (but weak or even negative in 20%)
- MPO negative (promonocytes may have some positivity)
AML, M5
AML, M5
AML, M5
AML, M5
Acute Monoblastic Leukemia
Acute Monoblastic/Monocytic Leukemia

DDx: Acute Monoblastic Leukemia

- AML, minimally differentiated
- AML, without maturation
- Acute megakaryoblastic leukemia
- Soft tissue sarcomas
- Lymphomas
Acute Monoblastic/Monocytic Leukemia

DDx: Acute Monocytic Leukemia

- AMML
- Microgranular variant of acute promyelocytic leukemia (MPO++)
Acute Monoblastic/Monocytic Leukemia

Immunophenotype

- CD13+, CD33+, CD117+, (variable myeloid)
- CD14+, CD4+, CD11b+, CD11c+, CD64+, CD68+, CD36+, lysozyme+ (monocytic)
- CD34 usually negative
Acute Monoblastic/Monocytic Leukemia

Genetics

- Abnormalities of 11q23 with acute monoblastic leukemia (included in AML with recurrent genetic abnormalities)
Acute Monoblastic/Monocytic Leukemia

Genetics

- t(8;16)(p11;p13) associated with acute monocytic leukemia
- Erythrophagocytosis by leukemic cells
Acute Monoblastic/Monocytic Leukemia

- Both acute monoblastic and monocytic leukemia follow aggressive course
Acute Erythroid Leukemia
Acute Erythroid Leukemia

- **Definition**
 - Acute leukemia characterized by predominant erythroid population
- **Two subtypes based on presence or absence of a significant myeloid component**
Acute Erythroid Leukemia

- Erythroleukemia (erythroid/myeloid)-M6a
 - ≥50% erythroid precursors in BM
 - ≥20% myeloblasts of non-erythroid cells in BM

- Pure erythroid leukemia-M6b
 - ≥80% immature erythroids in BM
 - No significant myeloblastic component
Acute Erythroid Leukemia

- Clinical features
 - Profound anemia
 - Normoblastemia
 - May evolve from MDS, either RAEB or RCMD with or without RS
 - Some CML can undergo erythroblastic transformation
Erythroleukemia
(erythroid/myeloid)

- Epidemiology
 - Adults
 - 5-6% of AML
Erythroleukemia
(erythroid/myeloid)

Morphology
BM
 ○ Hypercellular
 ○ Megakaryocytic dysplasia

● Erythroid
 ○ All stages
 ○ Frequent dysplasia
 ● megaloblastoid nuclei
 ● multinucleated forms
 ○ Cytoplasmic vacuoles

● Myeloid
 ○ Blasts similar to those in AML M1 or M2
Erythroleukemia (erythroid/myeloid)
Erythroleukemia (erythroid/myeloid)
Erythroleukemia (erythroid/myeloid)
Erythroleukemia (erythroid/myeloid)
Erythroleukemia (erythroid/myeloid)

- Cytochemistry
 - Iron: Ringed sideroblasts
 - PAS: Globular or diffuse cytoplasmic staining
 - MPO: Myeloblasts
Erythroleukemia (erythroid/myeloid)
Erythroleukemia (erythroid/myeloid)

- Immunophenotype
 - Erythroid
 - MPO negative
 - Glycophorin A, hemoglobin A positive
 - Myeloblasts
 - CD13, CD33, CD117, MPO, +/-CD34 and HLA-DR
Erythroleukemia (erythroid/myeloid)

- Differential diagnosis
 - RAEB
 - AML with maturation and increased erythroid precursors
 - AML with multilineage dysplasia
 - Dysplasia involving ≥50 of the myeloid or megakaryocyte-lineage cells.
Pure Erythroid Leukemia

- Epidemiology
 - Rare
 - Any age
Pure Erythroid Leukemia

Morphology

- Medium to large-sized erythroblasts with round nuclei, fine chromatin and one or more nucleoli
- Deeply basophilic cytoplasm, agranular and often vacuolated
Pure Erythroid Leukemia
Pure Erythroid Leukemia

Cytochemistry

- PAS positive vacuoles
- MPO negative
- Alpha-naphthyl acetate esterase and acid phosphatase positive

- EM
 - Free ferritin particles or siderosomes and rhopheocytosis
Pure Erythroid Leukemia

- Immunophenotype
 - Glycophorin A and hemoglobin A in more differentiated forms
 - Immature forms negative for glycophorin A
 - Positive for carbonic anhydrase 1, Gero antibody (against the Gerbich blood group)
 - Positive for CD36 (CD36 may be expressed in monocytes and megakaryocytes)
 - Megakaryocytic antigens CD41 and CD61 may be partially expressed
 - Negative for MPO, HLA-DR, CD34
Pure Erythroid Leukemia

Hemoglobin A
Pure Erythroid Leukemia

- Differential diagnosis of pure erythroid leukemia
 - Megaloblastic anemia due to vit B12 or folate deficiency
 - Response to vitamins
 - Less dysplasia
 - Hypersegmented neutrophils
 - Other AML; especially megakaryoblastic
 - Ambiguous immunophenotype/concurrent erythroid-megakaryocytic involvement
 - ALL, lymphoma
 - Lymphoid markers
Acute Erythroid Leukemia

- **Genetics**
 - No specific chromosome abnormality
 - Complex karyotypes common
 - Chromosomes 5 and 7 frequently affected
Acute Erythroid Leukemia

- **Cell of Origin**
 - Erythroleukemia (erythroid/myeloid)
 - Multipotent stem-cell with wide myeloid potential
 - Pure erythroid leukemia
 - Primitive stem cell with some degree of commitment to the erythroid lineage
Acute Erythroid Leukemia

- Prognosis and predictive factors
 - Erythroleukemia (erythroid/myeloid)
 - Aggressive clinical course
 - May evolve to a prominent myeloblast picture
 - Pure erythroid leukemia
 - Rapid clinical course
Acute Megakaryoblastic Leukemia
Acute Megakaryoblastic Leukemia

Definition
- Acute leukemia in which ≥50% of the blasts are megakaryocytic lineage

Epidemiology
- Adults and children
- 3-5% of AML
Acute Megakaryoblastic Leukemia

- Clinical features
 - Cytopenias, often thrombocytopenia
 - Dysplastic features in neutrophils and platelets
 - Organomegaly in children with t(1;22)
 - Bone lytic lesions
 - Mediastinal germ cell tumors in young adult males
 - Other types of AML and histiocytosis
Acute Megakaryoblastic Leukemia

Morphology

- Megakaryoblast
 - Medium to large size
 - Round, slightly irregular nucleus
 - Fine reticular chromatin
 - One to three nucleoli
 - Basophilic cytoplasm
 - Agranular
 - Bleb or pseudopod formation
- Blasts may occasionally be small resembling lymphoblasts
Acute Megakaryoblastic Leukemia
Acute Megakaryoblastic Leukemia

PB

- Micromegakaryocytes, megakaryoblastic fragments
- Dysplastic large platelets
- Hypogranular neutrophils
 - Micromegakaryocytes
 - Small cells
 - One or two round nuclei
 - Condensed chromatin
 - Mature cytoplasm
 - (Not to be counted as blasts)
Acute Megakaryoblastic Leukemia

Morphology/histopathology

- BM
 - Uniform population of poorly differentiated blasts
 - Mixed with maturing dysplastic megakaryocytes
 - Clusters of blasts
 - Variable reticulin fibrosis
Acute Megakaryoblastic Leukemia

t(1;22)(q13q13)
Acute Megakaryoblastic Leukemia

- Cytochemistry
 - SSB and MPO negative
 - PAS, acid phosphatase and punctate NSE positive

- EM
 - Peroxidase activity confined to the nuclear membranes and ER with Platelet Peroxidase (PPO) reaction
Acute Megakaryoblastic Leukemia

- Differential diagnosis
 - Minimally differentiated AML
 - Acute panmyelosis with myelofibrosis
 - Trilineage proliferation
 - ALL
 - Pure erythroid leukemia
Acute Megakaryoblastic Leukemia

- Differential diagnosis (cont.)
 - Blastic transformation of CML or CIMF
 - History of chronic phase
 - Splenomegaly common
 - Red cell abnormalities in CIMF
 - BCR/ABL in CML
 - Metastatic tumors in children
 - Alveolar rhabdomyosarcoma
 - Neuroblastoma
Acute Megakaryoblastic Leukemia

Immunophenotype
- Platelet glycoproteins
 - CD41, CD61 (cytoplasmic more sensitive)
 - CD42 less frequent
- Factor VIII
- Myeloid markers
 - CD13 and CD33 positive
 - MPO, CD34, CD45 and HLA-DR negative
- CD36
- Lymphoid marker
 - Aberrant CD7
Acute Megakaryoblastic Leukemia

- **Genetics**
 - No unique chromosomal abnormality in adults
 - inv(3)(q21;q26) found in other leukemias
 - Children t(1;22)(p13q13)
 - Young men with germ cell tumors i(12p)

- **Cell of origin**
 - Precursor committed to the megakaryocytic lineage and possibly erythroid lineage
Acute Megakaryoblastic Leukemia

- Prognosis
 - Poor
 - Particularly in infants with t(1;22)
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder in Down Syndrome
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder in Down Syndrome

- **Down Syndrome**
 - Increased predisposition to acute leukemia
 - Particularly AML, megakaryoblastic subtype
 - Spontaneous remission (transient myeloproliferative disorder)
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder in Down Syndrome

○ Clinical features
 ● Manifests in neonatal period
 ● Marked leukocytosis
 ○ PB blasts usually >30%, often >50%
 ● May be prominent extramedullary involvement
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder in Down Syndrome

Morphology (persistent or transient leukemia)

- Unusual blasts
 - 12-15 um round to slightly irregular nuclei
 - Moderate amounts of basophilic cytoplasm
 - Cytoplasmic blebs
 - Coarse azurophilic granules
- Promegakayocytes and micromegakaryocytes frequent
- Dyserythropoiesis common
- Dysgranulopoiesis minimal
- Increased basophils
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder in Down Syndrome

- Cytochemistry
 - Blasts
 - MPO, SBB, TdT negative
 - May have scattered, granular PAS positivity

- EM
 - Variable number of blasts with platelet peroxidase reactivity
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder in Down Syndrome

- **Genetics**
 - Trisomy 21
 - Additional clonal abnormalities
 - Trisomy 8 most frequent
 - No t(1;22)
 - FISH shows cytogenetic abnormalities in megakaryocytic and erythroid precursors
 - Molecular studies in transient proliferative disease
 - Clonality by X-chromosome linked polymorphism analysis
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder in Down Syndrome

- **Cell of origin**
 - Myeloid precursor cell with potential for megakaryocytic and erythroid differentiation

- **Prognosis**
 - Transient myeloproliferative disorder
 - Remits spontaneously in one to three months
 - Recurrence and 2nd remission or persistent disease may occur