AML, Not Otherwise Categorized (NOC)

AML, Not Otherwise Categorized (NOC)

 Do not fulfill criteria for insertion into a previously described category

AML, (NOC)

- Blast percentage in bone marrow determined from a 500 cell differential count
- Peripheral blood differential count should include 200 leukocytes

AML, Not Otherwise Categorized (NOC)

Basis for Classification

- Morphology
- Cytochemical features
- Maturation

AML, (NOC)

Blast Equivalents

- Promyelocytes in APL
- Promonocytes in AML with monocytic differentiation
- Megakaryoblasts

Type I blasts

Type II blasts

Type III blasts

Synonym

- FAB: Acute Myeloid Leukemia, M0
- 5% of all AMLs
- Mostly adults

- No evidence of myeloid differentiation by morphology or light microscopy cytochemistry
- Myeloblast nature determined by immunologic markers and ultrastructural studies (ultrastructural cytochemistry)

- Patients present with marrow failure
- Anemia
- Neutropenia
- Thrombocytopenia
- May be leukocytosis and increased blasts in peripheral blood

Morphology

- Medium sized blasts (less often smaller)
- Round (or slightly indented) nucleus
- Dispersed nuclear chromatin (less often condensed)
- One or two nucleoli (less often inconspicuous)

Morphology

- Agranular cytoplasm (varying basophilia)
- No Auer rods
- Bone marrow usually hypercellular

AML MO

AML MO

Negative MPO

Cytochemistry

 Myeloperoxidase (MPO), Sudan Black B (SBB), and naphthol ASD chloroacetate esterase cytochemical stains are all negative (less than 3% positivity in all blasts)

Cytochemistry

 Alpha naphthyl acetate esterase and alpha naphthyl butyrate esterase stains are all negative (no monocytic differentiation)

Ultrastructural Cytochemistry

- More sensitive
- MPO activity in small granules, endoplasic reticulum, Golgi area, and/or nuclear membranes

Immunophenotype

- CD34+, CD117+, HLA-DR+,
 CD13+, CD33+, TdT+ (in one-third)
- Negative for B and T restricted markers (cCD3, cCD79a, cCD22)

Immunophenotype

- Negative for myelomonocytic differentiation markers (CD11b, CD15, CD14, CD65)
- CD7, CD2, CD19 occasionally weakly positive (lymphoid differentiation)

Genetics

- None specific
- Complex karyotypes, trisomy 13, trisomy 8, trisomy 4, monosomy 7

Differential Diagnoses

- o ALL
- Acute megakaryoblastic leukemia
- Biphenotypic/mixed lineage acute leukemias

- Poor prognosis
- Lower remission rate
- Shorter survival

Synonym

FAB: Acute Myeloid Leukemia, M1

- Blasts greater than or equal to 90% of non-erythroid nucleated cells
- Granulocytic elements <10%
- No maturation
- MPO or SBB positivity > 3% of blasts
- Auer rods may be present

- 10% of all AMLs
- Adults (but can occur at any age)
- Median age: 46 years

Presentation

- Bone marrow failure
- Anemia
- Thrombocytopenia
- Neutropenia
- Leukocytosis with increased blasts in blood

Morphology

- Bone marrow usually hypercellular
- Azurophilic granules and/or Auer rods
- (Some blasts may resemble lymphoblasts)

AML M1

AML M1

AML, M1

AML, M1

AML M1

Differential Diagnoses

- ALL when granules are absent and MPO+ is low (but at least 3%)
- AML with maturation (when blasts are high)

Immunophenotype

- CD13+, CD33+, CD117+, MPO+ (at least 2 of these myelomonocytic markers)
- CD11b-, CD14- (monocytic markers)
- CD3-, CD20-, CD79a- (lymphoid markers)

Genetics

 No specific recurrent chromosome abnormalities

 Aggressive course and poor prognosis

Synonym

FAB: Acute myeloid leukemia, M2

- At least 20% blasts in bone marrow or blood (but less than 90%)
- Granulocytic elements at least 10% of non-erythroid cells
- Monocytic elements <20% of nonerythroid cells

- 30-45% of all AMLs
- All ages
- 0 20% < 25 years</p>
- 40% are 60 years or older

- Anemia
- Thrombocytopenia
- Neutropenia
- Variable number of blasts in blood

Morphology

- Bone marrow hypercellular
- Blasts with or without granules
- Auer rods frequent
- Various degrees of dysplasia
- Eosinophils and basophils may be increased

M2 morphology

AML, M2

AML, M2

Differential Diagnoses

- RAEB (if blast numbers are at lower limit)
- AML without maturation (if blast numbers are at upper limit)
- AMML (when monocytes are increased)

Immunophenotype

- o CD13+, CD33+, CD15+
- Often CD34+, CD117+, HLA-DR+

Genetics

- del(12)(p11-p13) associated with increased basophils
- t(6;9)(p23;q34) (DEK/CAN fusion gene)
- t(8;16)(p11;p13) associated with erythrophagocytosis

- Responds frequently to aggressive therapy
- t(6;9)(p23;q34) have poorer prognosis

Acute Myelomonocytic Leukemia (AMML)

Acute Myelomonocytic Leukemia (AMML)

Synonym

FAB: Acute myeloid leukemia, M4

- Blasts at least 20%
- Granulocytic elements at least 20% of non-erythroid cells in bone marrow
- Monocytic elements at least 20% of non-erythroid cells in bone marrow (if <20% but circulating monocytes at least 5 x 10⁹/L, Dx still AMML)

- Anemia
- Thrombocytopenia
- Fever
- Fatigue
- Variable circulating blasts

- 15-25% of all AMLs
- Older individuals
- Median age: 50 years
- Male-to-female ratio 1.4:1

Morphology

- Monoblasts round nuclei, lacy chromatin, one or more prominent nuclei. Abundant basophilic cytoplasm. Pseudopods. Some granules and vacuoles.
- Promonocytes blast equivalent.
 More irregular nucleus. Less basophilic. More granules

Monoblasts, promonocytes

Monoblasts

Promonocytes

Morphology

- MPO+ (at least 3% of blasts)
- Monocytic elements non-specific esterase +
- Morphology sufficient criterion for monocytic cells (even if esterase negative)
- Double staining for MPO and esterase can be present

Butyrate

Differential Diagnoses

- AML with maturation
- Acute monocytic leukemia

Immunophenotype

- CD13+, CD33+ (myeloid)
- CD14+, CD4+, CD11b+, CD11c+, CD64+, CD36+, lysozyme+ (monocytic)
- [CD34+ (residual cells)]

Genetics

- Non-specific
- Specific abnormalities are under AML with recurrent genetic abnormalities, such as (inv)16 or 11q23

- Frequently responds to aggressive therapy
- Variable survival rates

Synonyms

- FAB: Acute monoblastic leukemia,
 M5a
- FAB: Acute monocytic leukemia,
 M5b

- At least 80% of non-erythroid cells are monoblasts, promonocytes, and monocytes
- Promonocytes are blast equivalents
- Granulocytic elements < 20%

- Acute monoblastic leukemia at least 80% monoblasts
- Acute monocytic leukemia less than 80% monoblasts

Acute Monoblastic Leukemia

- 5-8% of all AMLs
- Young individuals (but at any age)
- In infancy often with 11q23
- Extramedullary lesions possible

Acute Monocytic Leukemia

- o 3-6% of all AMLs
- Adults
- Median age: 49 years
- Male-to-female ratio 1.8:1

- Bleeding disorders most common presentation
- Cutaneous and gingival infiltration
- CNS involvement
- Extramedullary masses

- Non-specific esterase activity strongly positive (but weak or even negative in 20%)
- MPO negative (promonocytes may have some positivity)

Acute Monoblastic Leukemia

DDx: Acute Monoblastic Leukemia

- AML, minimally differentiated
- AML, without maturation
- Acute megakaryoblastic leukemia
- Soft tissue sarcomas
- Lymphomas

DDx: Acute Monocytic Leukemia

- AMML
- Microgranular variant of acute promyelocytic leukemia (MPO++)

Immunophenotype

- CD13+, CD33+, CD117+, (variable myeloid)
- CD14+, CD4+, CD11b+, CD11c+,
 CD64+, CD68+, CD36+, lysozyme+
 (monocytic)
- CD34 usually negative

Genetics

 Abnormalities of 11q23 with acute monoblastic leukemia (included in AML with recurrent genetic abnormalities)

Genetics

- t(8;16)(p11;p13) associated with acute monocytic leukemia
- Erythrophagocytosis by leukemic cells

 Both acute monoblastic and monocytic leukemia follow aggressive course

- Definition
 - Acute leukemia characterized by predominant erythroid population
- Two subtypes based on presence or absence of a significant myeloid component

- Erythroleukemia (erythroid/myeloid)-M6a
 - >50% erythroid precursors in BM
 - >20% myeloblasts of non-erythroid cells in BM
- Pure erythroid leukemia-M6b
 - >80% immature erythroids in BM
 - No significant myeloblastic component

- Clinical features
 - Profound anemia
 - Normoblastemia
 - May evolve from MDS, either RAEB or RCMD with or without RS
 - Some CML can undergo erythroblastic transformation

- Epidemiology
 - Adults
 - 5-6% of AML

Morphology BM

- Hypercellular
- Megakaryocytic dysplasia
- Erythroid
 - All stages
 - Frequent dysplasia
 - megaloblastoid nuclei
 - multinucleated forms
 - Cytoplasmic vacuoles
- Myeloid
 - Blasts similar to those in AML M1 or M2

Cytochemistry

Iron: Ringed sideroblasts

 PAS: Globular or diffuse cytoplasmic staining

MPO: Myeloblasts

PAS

PAS

- Immunophenotype
 - Erythroid
 - MPO negative
 - Glycophorin A, hemoglobin A positive
 - Myeloblasts
 - CD13, CD33, CD117, MPO, +/-CD34 and HLA-DR

- Differential diagnosis
 - RAEB
 - AML with maturation and increased erythroid precursors
 - AML with multilineage dysplasia
 - Dysplasia involving >50 of the myeloid or megakaryocyte-lineage cells.

- Epidemiology
 - Rare
 - Any age

Morphology

- Medium to large-sized erythroblasts with round nuclei, fine chromatin and one or more nucleoli
- Deeply basophilic cytoplasm, agranular and often vacuolated

Cytochemistry

- PAS positive vacuoles
- MPO negative
- Alpha-naphthyl acetate esterase and acid phosphatase positive

o EM

 Free ferritin particles or siderosomes and rhopheocytosis

- Immunophenotype
 - Glycophorin A and hemoglobin A in more differentiated forms
 - Immature forms negative for glycophorin A
 - Positive for carbonic anhydrase 1, Gero antibody (against the Gerbich blood group)
 - Positive for CD36 (CD36 may be expressed in monocytes and megakaryocytes)
 - Megakaryocytic antigens CD41 and CD61 may be partially expressed
 - Negative for MPO, HLA-DR, CD34

- Differential diagnosis of pure erythroid leukemia
 - Megaloblastic anemia due to vit B12 or folate deficiency
 - Response to vitamins
 - Less dysplasia
 - Hypersegmented neutrophils
 - Other AML; especially megakaryoblastic
 - Ambiguous immunophenotype/concurrent erythroid-megakaryocytic involvement
 - ALL, lymphoma
 - Lymphoid markers

Acute Erythroid Leukemia

- Genetics
 - No specific chromosome abnormality
 - Complex karyotypes common
 - Chromosomes 5 and 7 frequently affected

Acute Erythroid Leukemia

- Cell of Origin
 - Erythroleukemia (erythroid/myeloid)
 - Multipotent stem-cell with wide myeloid potential
 - Pure erythroid leukemia
 - Primitive stem cell with some degree of commitment to the erythroid lineage

Acute Erythroid Leukemia

- Prognosis and predictive factors
 - Erythroleukemia (erythroid/myeloid)
 - Aggressive clinical course
 - May evolve to a prominent myeloblast picture
 - Pure erythroid leukemia
 - Rapid clinical course

- Definition
 - Acute leukemia in which >50% of the blasts are megakaryocytic lineage
- Epidemiology
 - Adults and children
 - 3-5% of AML

- Clinical features
 - Cytopenias, often thrombocytopenia
 - Dysplastic features in neutrophils and platelets
 - Organomegaly in children with t(1;22)
 Bone lytic lesions
 - Mediastinal germ cell tumors in young adult males
 - Other types of AML and histiocytosis

Morphology

- Megakaryoblast
 - Medium to large size
 - Round, slightly irregular nucleus
 - Fine reticular chromatin
 - One to three nucleoli
 - Basophilic cytoplasm
 - Agranular
 - Bleb or pseudopod formation
- Blasts may occasionally be small resembling lymphoblasts

PB

- Micromegakaryocytes, megakaryoblastic fragments
- Dysplastic large platelets
- Hypogranular neutrophils
 - Micromegakaryocytes
 - Small cells
 - One or two round nuclei
 - Condensed chromatin
 - Mature cytoplasm
 - (Not to be counted as blasts)

Morphology/histopathology

- BM
 - Uniform population of poorly differentiated blasts
 - Mixed with maturing dysplastic megakaryocytes
 - Clusters of blasts
 - Variable reticulin fibrosis

- Cytochemistry
 - SSB and MPO negative
 - PAS, acid phosphatase and punctate NSE positive
- o EM
 - Peroxidase activity confined to the nuclear membranes and ER with Platelet Peroxidase (PPO) reaction

- Differential diagnosis
 - Minimally differentiated AML
 - Acute panmyelosis with myelofibrosis
 Trilineage proliferation
 - ALL
 - Pure erythroid leukemia

- Differential diagnosis (cont.)
 - Blastic transformation of CML or CIMF
 - History of chronic phase
 - Splenomegaly common
 - Red cell abnormalities in CIMF
 - BCR/ABL in CML
 - Metastatic tumors in children
 - Alveolar rhabdomyosarcoma
 - Neuroblastoma

Immunophenotype

- Platelet glycoproteins
 - CD41, CD61 (cytoplasmic more sensitive)
 - CD42 less frequent
- Factor VIII
- Myeloid markers
 - CD13 and CD33 positive
 - MPO, CD34, CD45 and HLA-DR negative
- CD36
- Lymphoid marker
 - Aberrant CD7

Genetics

- No unique chromosomal abnormality in adults
- inv(3)(q21;q26) found in other leukemias
- Children t(1;22)(p13q13)
- Young men with germ cell tumors i(12p)
- Cell of origin
 - Precursor committed to the megakaryocytic lineage and possibly erythroid lineage

- Prognosis
 - Poor
 - Particularly in infants with t(1;22)

Down Syndrome

- Increased predisposition to acute leukemia
 - Particularly AML, megakaryoblastic subtype
- Spontaneous remission (transient myeloproliferative disorder)

Clinical features

- Manifests in neonatal period
- Marked leukocytosis
 - PB blasts usually >30%, often >50%
- May be prominent extramedullary involvement

Morphology (persistent or transient leukemia)

- Unusual blasts
 - 12-15 um round to slightly irregular nuclei
 - Moderate amounts of basophilic cytoplasm
 - Cytoplasmic blebs
 - Coarse azurophilic granules
- Promegakayocytes and micromegakaryocytes frequent
- Dyserythropoiesis common
- Dysgranulopoiesis minimal
- Increased basophils

- Cytochemistry
 - Blasts
 - MPO, SBB, TdT negative
 - May have scattered, granular PAS positivity
- o EM
 - Variable number of blasts with platelet peroxidase reactivity

Genetics

- Trisomy 21
- Additional clonal abnormalities
 - Trisomy 8 most frequent
 - No t(1;22)
- FISH shows cytogenetic abnormalities in megakaryocytic and erythroid precursors
- Molecular studies in transient proliferative disease
 - Clonality by X-chromosome linked polymorphism analysis

Cell of origin

 Myeloid precursor cell with potential for megakaryocytic and erythroid differentiation

Prognosis

- Transient myeloproliferative disorder
 - Remits spontaneously in one to three months
 - Recurrence and 2nd remission or persistent disease may occur