Therapy-Related AML
Therapy-Related AML

- After cytotoxic chemotherapy and/or radiation therapy
- Two types:
  1. Alkylating agent and radiation therapy related
  2. Topoisomerase II inhibitor related
Alkylation Agent/Radiation Therapy Related AML (MDS)

- Occur 5-6 years after initiation of treatment
- Range: 10-192 months
- Risk related to age and cumulative dosage
- Mutagenic effects of ionizing radiation and alkylating agents
Alkylating Agent/Radiation Therapy Related AML (MDS)

- Two-thirds of cases that present as MDS satisfy the criteria for RCMD
- MDS phase can evolve to higher grade MDS or AML
- A minority of cases present as overt AML
Alkylating Agent/Radiation Therapy Related AML (MDS)

- All myeloid cell lines affected
- Dyserythropoiesis
- Ringed-sideroblasts in 60% of cases (one-third in excess of 15% ringed-sideroblasts)
- Hypogranulation and nuclear hypolobation in granulocytes
Alkylation Agent/Radiation Therapy Related AML (MDS)

- Dysplastic megakaryocytes increased in 25%
- Basophils increased in 25%
- Occasional Auer rods
Alkylation Agent/Radiation Therapy Related AML (MDS)

Bone marrow biopsy

- Hypercellular in 50%
- Normocellular in 25%
- Hypocellular in 25%
- Fibrosis in 15%
Alkylating Agent/Radiation Therapy Related AML (MDS)

Dysplastic normoblasts

Ringed-sideroblasts
Alkylating Agent/Radiation Therapy Related AML (MDS)

Dysplastic normoblasts
Alkylating Agent/Radiation Therapy Related AML (MDS)

Pseudo Pelger-Huet cells
Alkylating Agent/Radiation Therapy Related AML (MDS)

Features

- AML with maturation
- Myelomonocytic
- Monocytic
- Erythroleukemic
- Megakaryoblastic
Alkylating Agent/Radiation Therapy Related AML (MDS) Immunophenotype

- Blasts often CD34+
- CD33+, CD13+
- Occasionally CD56+ and CD7+
- MDR-1 (multidrug resistance glycoprotein) expression
Alkylating Agent/Radiation Therapy Related AML (MDS): Genetics

- Increased cytogenetic abnormalities
- Similar to *de novo* MDS, RCMD, RAEB
- Unbalanced translocations
- Deletions of chromosomes 5 and 7 (long arms)
- Other chromosomes abnormalities: 1, 4, 12, 14, 18
- Complex chromosomal abnormalities
Alkylating Agent/Radiation Therapy
Related AML (MDS)

Prognosis

- Poor response to therapy
- Poor survival
Topoisomerase II Inhibitor
Related AML (MDS)

- Epipodophyllotoxins and related compounds that target DNA-Topoisomerase II (gyrase)
  
  *E.g.*, Etoposide and teniposide

- Also anthracyclines, such as doxorubicin and 4-epi-doxorubicin
Topoisomerase II Inhibitor Related AML (MDS)

- All ages
- Shorter latency 12-130 months (median: 33-34 months)
- Latency can be less than 6 months
Topoisomerase II Inhibitor Related AML (MDS)

- Usually presents as overt AML without a previous MDS phase
- Significant monocytic component
- Most are acute monoblastic or myelomonocytic (Acute promyelocytic leukemia in some as well as acute megakaryoblastic leukemia)
- Bone marrow usually hypercellular
Topoisomerase II Inhibitor Related AML (MDS)

- Acute lymphoblastic leukemia also possible
- Usually associated with t(4;11)(q21;q23) chromosome abnormality
Topoisomerase II Inhibitor
Related AML (MDS)

Genetics

- Usually balanced translocation involving 11q23 (MLL gene) and chromosomes 6, 9, and 19
- t(8;21), t(3;21), t(6;9)
- t(4;11)(q21;q23) (associated with ALL)
- t(15;17)(q22;p21) (APL)
Topoisomerase II Inhibitor
Related AML (MDS)

Prognosis

- Good initial response to therapy, but relapses are frequent (especially with 11q23)
- Survival variable (but poor in 11q23)
- Insufficient data of long-term follow-up
AML with multilineage dysplasia
Definition

- AML plus dysplasia
- Dysplasia: >50% of cells of 2 or more myeloid lines in a pre-treatment specimen.
- May occur de novo or following MDS or MDS/MPD.
Epidemiology and clinical features

- Mainly in elderly and rare in children
- Often severe pancytopenia
**Morphology**

**Specimen needed:** well-stained, pre-treatment smears of blood or bone marrow

<table>
<thead>
<tr>
<th>Dysgranulopoiesis</th>
<th>Dyserythropoiesis</th>
<th>Dysmegakaryopoiesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypogranular cytoplasm</td>
<td>Megaloblastic nuclei</td>
<td>Micromegakaryocytes</td>
</tr>
<tr>
<td>Hyposegmented nuclei (pseudo Pelger-Huet anomaly)</td>
<td>Karyorrhexis</td>
<td>Monolobated</td>
</tr>
<tr>
<td>Bizarrely segmented nuclei</td>
<td>Nuclear fragments</td>
<td>Multiple separated nuclei</td>
</tr>
<tr>
<td></td>
<td>Multinucleation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ringed sideroblasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytoplasmic vacuoles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAS positivity</td>
<td></td>
</tr>
</tbody>
</table>
Differential diagnosis

- M2
- M6
Immunophenotype

- Generally: CD34 and pan-myeloid markers (CD13 and CD33)
- Frequently: aberrant exp of CD56 and CD7
- Increased incidence: MDR-1
Genetics

- Similar to MDS

- Often:
  - -7/del(7q), -5/del(5q), +8, +9, +11, del(11q), del(12p), -18, +19, del(20q), +21

- Less often: t(2;11), t(1;7), 3q21, and 3q26
Prognosis

Multilineage dysplasia: adverse effect on achieving remission