Acute basophilic Leukemia
WHO Acute basophilic Leukemia

- AML with primary differentiation to basophils.
- Some may represent blast transformation of an undetected Philadelphia chromosome BCR/ABL positive CML.
- Rare disease, < 1% of AMLs.
Clinically

- Features related to bone marrow failure.
- May be circulating blasts.
- Cutaneous involvement.
- Organomegaly.
- Lytic lesions.
- Hyperhistaminemia.
Morphology and Cytochemistry

• Blasts in blood and bone marrow.
 – Medium size, high N/C ratio.
 – Oval, rounded or bilobed nucleus with dispersed chromatin and 1-3 nucleoli.
 – Moderately basophilic cytoplasm and contains a variable number of coarse basophilic granules which may stain positive in metachromatic stains. There may be vacuoles.
Acute basophilic leukemia: bone marrow smear. Blasts and immature basophils. Granules vary from large coarse to smaller granules.
Morphology and Cytochemistry

• Blasts in blood and bone marrow.
 – Scanty mature basophils usually.
 – There may be dysplastic features in the erythroid precursors.
Blasts in blood and bone marrow.

- E.M.: granules contain structures characteristic of basophil precursors or mast cells:
 (1) an electron-dense particulate substance, internally bisected, or
 (2) a crystalline material arranged in a pattern of scrolls or lamellae (more typical of mast cells).

- Both granule types may be present in the same cell.
E.M. micrograph of an immature basophil. Speckled amorphous substance in granules. A granule contains a myelin figure.
Morphology and Cytochemistry

• Characteristic: metachromatic positivity with toluidine blue.

• Besides:
 - diffuse staining with acid phosphatase.
 - PAS positivity in blocks (some cases).
 - Blasts usually negative for SBB, MPO and NSE. Peroxidase activity can be ultrastructurally demonstrated.
Acute basophilic leukemia: toluidine blue reaction. Maturing basophils containing metachromatic granules.
Morphology and Cytochemistry

- Trephine biopsy:
 - Diffuse replacement by blast cells, sometimes with an increased number of basophil precursors.
 - Cases with mast cell differentiation: differentiated mast cells are close to the trabeculi. These cases often have prominent reticulin fibrosis.
Differential diagnosis

- Blast crisis of CML.
- AML subtypes with basophilia.
 - AML-M2 with 12p abnormalities or t(6;9).
 - Acute eosinophilic leukaemia.
 - Rare subtype of lymphoblastic leukemia with prominent coarse granules.
Differential diagnosis

• Clinical features, cytogenetics and blast cell morphology will distinguish between *de novo* cases from transformations of a CML and of an AML with basophilia.

• Immunological markers will distinguish between granulated ALL and acute basophilic leukemia.

• Cytochemistry for MPO and E.M. will distinguish basophilic from eosinophilic leukemia.
Immunophenotype

- Myeloid markers: CD13, CD33.
- Early haematopoietic markers: CD34, class-II HLA-DR.
- Usually blasts are CD9+ and some may be TdT+, but negative for specific lymphoid markers.
Genetics

- No consistent chromosome abnormality identified.
- 12p abnormalities or t(6;9), which may occur in AML with basophilia, are not identified.
- A few cases may present as de novo Philadelphia chromosome positive acute leukemia, with a t(9;22)(q34;q11).
Postulated cell of origin

- Early myeloid cell committed to the basophil lineage.

Prognosis

- Insufficient data available. Generally poor.
Acute panmyelosis with myelofibrosis
Acute panmyelosis with myelofibrosis

- Acute panmyeloid proliferation with accompanying fibrosis of the bone marrow.

- **Synonyms:**
 - Acute myelofibrosis
 - Acute myelosclerosis
 - Acute myelodysplasia with myelofibrosis
Epidemiology

- Very rare form of AML.
- Mainly adults, but also described in children.
- A de novo process or after treatment with alkylating agents and/or radiation.
Clinically

- Constitutional symptoms, weakness, fatigue.
- Marked cytopenia.
- No or minimal splenomegaly.
- Rapidly progressive evolution.
Morphology and Cytochemistry

• Marked cytopenia.

• RBCs:
 – No or minimal poikilocytosis.
 – Some anisocytosis.
 – Variable number of macrocytes.
 – Rare normoblasts.

Occasional immature neutrophils including blasts.
Morphology and Cytochemistry

• Dysplastic changes in myeloid cells.
• Atypical platelets may be noted.
• Unsuccessful bone marrow aspiration.
• Biopsy:
 – Hypercellular.
 – Variable hyperplasia of erythroid precursors, granulocytes and megakaryocytes.
 – Scattered foci of immature cells including blasts.
Acute myelofibrosis: trephine biopsy imprint. Several megakaryocytes with hypolobulated nuclei and blast forms.
Morphology and Cytochemistry

• Clusters of late erythroid precursors may be prominent.

• Conspicuous megakaryocytes, small to large with dysplastic features virtually always present.
 - Non-lobated nuclei with dispersed chromatin.
 - Uniformly eosinophilic cytoplasm, stained with PAS, FVIII, CD61.
Morphology and Cytochemistry

- Variable degree of fibrosis.

- Most have a marked increase in reticulin fibers.

- Uncommon collagenous fibrosis.
Acute myelofibrosis: trephine biopsy. Marked reticulin fibrosis and numerous megakaryocytes.
Acute myelofibrosis: trephine biopsy. Megakaryocytes with hypolobulated nuclei.
Differential diagnosis

- Acute megakaryoblastic leukemia.
- Acute leukemia with associated fibrosis.
- Metastatic tumor with a desmoplastic reaction.
- Chronic idiopathic myelofibrosis (CIMF).
- Distinction between acute panmyelosisis with myelofibrosis, AML-M7 with fibrosis, AML with multilineage dysplasia and fibrosis may be arbitrary and irrelevant clinically.
- Proliferative process involving all cell lines (granulocytes, erythroids and megakaryocytes) favors Acute Panmyelosis with Myelofibrosis.
Differential diagnosis

- Can be distinguished from CIMF by the predominance of more immature cells in the acute process and the characteristics of the megakaryocytes:
 - Acute process: dispersed chromatin and non-lobated or hypolobated nuclei. No or minimal splenomegaly (physical finding).
 - CIMF: condensed nuclear chromatin and contorted nuclei. Splenomegaly as a rule (physical finding).

- Metastatic tumor easier to identify with Immunostain studies.
Immunophenotype

- Phenotypic heterogeneity.
- Variable degree of expression of myeloid antigens.
- Blasts may express one or more myeloid antigens: CD13, CD33, CD117 and MPO.
- In some cases immature cells express erythroid or megakaryocytic antigens.
- Immunostains for multilineage antigens is recommended: MPO, lysozyme, CD41, CD61, FVIII, Gly-A, HbA.
Acute myelofibrosis: trephine biopsy. Megakaryocytes positive for FVIII-associated antigen (immunoperoxidase stain).
Genetics

• Complex abnormalities frequently involving chromosome 5 and/or 7.
Postulated cell of origin

- Myeloid hematopoietic stem cell.
- Fibroblastic proliferation is an epiphenomenon.

Prognosis

- Usually associated with poor response to chemotherapy and short survival.
Myeloid sarcoma
Myeloid sarcoma

• Definition
 – Tumor mass of myeloblasts or immature myeloid cells occurring in an extramedullary site or in bone
 – May precede or occur concurrently with acute or chronic myeloid leukemias, MPDs or MDSs
 – Initial manifestation of relapse in previously treated AML
Myeloid sarcoma

• **Synonyms**
 - Extramedullary myeloid tumor
 - Granulocytic sarcoma
 - Chloroma
Myeloid sarcoma

- Sites of involvement
 - Subperiosteal bone or skull, paranasal sinuses, sternum, ribs, vertebrae and pelvis
 - Lymph nodes
 - Skin
Myeloid sarcoma

• Clinical features
 – *de novo*
 – Concurrently or preceding AML
 • May precede AML by months to years
Myeloid sarcoma

• **Differential diagnosis**

 – Non-Hodgkin lymphoma
 • Lymphoblastic type
 • Burkitt lymphoma
 • Large-cell lymphoma

 – Small round cell tumors
 • Neuroblastoma, rhabdomyosarcoma, Ewing’s/PNET and medulloblastoma
Myeloid sarcoma

- **Immunophenotype**
 - **Myeloid blasts**
 - CD13, CD33, CD117, MPO
 - CD43
 - **Monoblasts**
 - CD14, CD116, CD11c, lysozyme, CD68
Myeloid sarcoma

• **Genetics**
 - Association with AML with maturation and $t(8;21)(q22;q22)$ and AMML Eo with $\text{inv}(16)(p13q22)$ or $t(16;16)(p13q22)$
 - 11q23 in monoblastic sarcoma

• **Cell of origin**
 - Primitive myeloid hematopoietic cell
Myeloid sarcoma

- **Prognosis**
 - Myeloid sarcoma in a setting of MDS or MPD is blast transformation
 - Myeloid sarcoma does not generally change the prognosis of the underlying leukemia
 - Isolated myeloid sarcoma
 - Radiotherapy may result in very prolonged survival
Acute Leukemias of Ambiguous Lineage
Acute Leukemias of Ambiguous Lineage

- **Definition**
 - Forms of acute leukemia in which the morphologic, cytochemical and immuno-phenotypic features of the blasts:
 - lack sufficient evidence to classify as myeloid or lymphoid origin
 - or, have morphologic and/or immunophenotypic characteristics of both myeloid and lymphoid cells (acute bilineal leukemia and acute biphenotypic leukemia).
 - or, have both B and T lineages (acute bilineal leukemia and acute biphenotypic leukemia).
Acute Leukemias of Ambiguous Lineage

• Synonyms
 – Acute leukemia of indeterminate lineage
 – Mixed phenotype acute leukemia
 – Mixed lineage acute leukemia
 – Hybrid acute leukemia
Acute Leukemias of Ambiguous Lineage

• **Epidemiology**
 - <4% of all acute leukemias
 - More frequent in adults

• **Etiology**
 - Unknown
 - Environmental toxins and radiation exposure
Acute Leukemias of Ambiguous Lineage

- Clinical features
 - Related to bone marrow failure
 - Fatigue
 - Infections
 - Bleeding
Acute Leukemias of Ambiguous Lineage

• Morphology
 – Acute undifferentiated leukemia
 • Leukemic cells lack any differentiating features
 – Acute biphenotypic and acute bilineal leukemias
 • May present as one subtype of AML
 – Monoblastic
 – Poorly differentiated myeloid
 • Features of ALL
Acute Leukemias of Ambiguous Lineage

• **Immunophenotype**
 – Undifferentiated acute leukemia
 • Leukemias lack specific lineage markers
 – CD79a, CD22, CD3 and MPO
 • Generally don’t express more than one lineage-associated marker
 • Often express HLA-DR, CD34, CD38, +/- TdT and CD7
Acute Leukemias of Ambiguous Lineage

• Immunophenotype (cont)
 – Bilineal acute leukemia
 • Dual population of blasts, each with distinct lineage
 – Myeloid and lymphoid, or
 – B and T lineages
 • May evolve into biphenotypic acute leukemia
Acute Leukemias of Ambiguous Lineage

• Immunophenotype (cont.)
 – Biphenotypic acute leukemia
 • Blasts co-express myeloid and T or B lineage markers
 • Or, concurrent B and T lineage markers
 • Rarely co-express markers for all lineages (myeloid, T, and B)
Biphenotypic acute leukemia
Acute Leukemias of Ambiguous Lineage

- Immunophenotype (cont.)
 - Co-expression of lineage-associated (not specific) markers is not sufficient for biphenotypic leukemia.
 - Myeloid-antigen positive ALL
 - Lymphoid antigen-positive AML
 - “Lineage switch” after therapeutic intervention
 - Possible expansion of pre-existing minor population of blasts of different lineage following therapeutic suppression of the major population
 - Possible lineage instability
Acute Leukemias of Ambiguous Lineage

- **Myeloid lineage:**
 MPO (flow, immuno, or cytochemistry)
 or
 Monocytic differentiation (2 of the following: NSE, CD11c, CD14, CD64, lysozyme)

- **T lineage:**
 CD3 (surface or cytoplasmic)

- **B lineage:**
 Strong CD19 with at least 1 of the following: CD79a, cCD22, CD10
 or
 Weak CD19 with at least 2 of the following: CD79a, cCD22, CD10
Acute Leukemias of Ambiguous Lineage

• Differential diagnosis
 – Biphenotypic acute leukemia
 • Myeloid antigen positive ALL
 • Lymphoid antigen positive AML
 – Undifferentiated acute leukemia
 • Minimally differentiated AML
 • Unusual precursor-B-cell or T-cell ALL
Acute Leukemias of Ambiguous Lineage

- Genetics
 - High degree of cytogenetic abnormalities
 - 1/3 have Ph chromosome
 - CD10(+) precursor B lymphoid component
 - t(4;11)(q21;q23)
 - 11q23
 - CD10 (−) precursor B population with a separate component of acute monocytic leukemia
Acute Leukemias of Ambiguous Lineage

• Genetics (cont.)
 – T/myeloid biphenotypic or bilineal leukemia do not show these cytogenetic findings (previous slide) but have other complex karyotypes

• Molecular diagnosis
 – Shows Ig and TCR rearrangements or deletions in many cases including those that present as “AML”
Acute Leukemias of Ambiguous Lineage

• Cell of origin
 – Multipotent progenitor stem cell

• Prognosis
 – Unfavorable, particularly in adults
 – t(4;11) or Ph particularly unfavorable

• Therapy
 – Usually aggressive chemotherapy
 – BMT